

Reactivos λ^3 -iodanos en síntesis orgánica, nitración de arilos ricos en electrones.

Kevin Arturo Juárez Ornelas, César Rogelio Solorio Alvarado, José Oscar Carlos Jiménez Halla

Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, 36050, Guanajuato, Gto., México. gkevin15@gmail.com, csolorio@ugto.mx, misticodenereida@gmail.com.

Resumen

El grupo funcional nitro (-NO₂) abstrae fuertemente la densidad electrónica del núcleo al que es conectado. Por un lado, los compuestos nitroderivados nos permiten ensayarlos como medicamentos¹ como antibióticos, vasodilatadores vasoconstrictores. además transformarlos en grupos amino y a su vez en halógenos. La síntesis de nitro derivados en la actualidad se puede generalizar a el uso de ácido nítrico y heteropoliácidos². Existen metodologías innovadoras más como las microemulsiones con nitrato sódico³ o utilizando ácidos de Lewis metálicos $(Th(IV), {}^{4}V_{2}O_{5}, {}^{5}).$

Nuestra nueva metodología se basa en el uso de reactivos de bajo costo y toxicidad, como el Al(NO₃)₃ y el yodosobenceno (PhIO) para llevar a cabo nitraciones (Esquema 1) en arilos ricos en electrones.

Esquema 1. Reacción de nitración

Arilo o
$$PhIO$$
 $Ar-NO_2$ o $MeCN. 0 °C$ $Ar-NO_2$ o $Het-NO_2$

Al momento, se han realizado más de 45 ejemplos de fenoles y naftoles, llevando a cabo así, el análisis del alcance de la reacción. Además, se hará uso de la química computacional para llevar a cabo los cálculos correspondientes para explorar el mecanismo de la reacción y fundamentarlo.

Referencias.

- 1. DrugBank en: https://www.drugbank.ca/categories/DBCAT
 000765 Visitado el: 2/noviembre/2018
- 2. Baghernejad B., Heravi M. M., Oskooie H. H., Bamoharram F. F. *Bull. Chem. Soc. Ethiop.* **2012**, 26, 145-152.
- 3. Jian-Zhong J., Li-Ting L., Zheng-Yong L., Zheng-Gang C., and Li-Yun Q. *J. Disp. Sci. Tech.*, **2010**, *32*, 125-127.
- 4. Heravi M. M., Benmorad T., Bakhtiari K., Bamoharramb F. F., Oskooie H. H. *J. Mol. Catal. A: Chem.*, **2007**, *264*, 318-321.
- 5. Venkatesham N., Reddy K. R., Rajanna K. C., Veerasomaiah P. *Synth. React. Inorg., Metal-Organic, Nano-Metal Chem.*, **2014**, *44*, 921-926.