IDENTIFICACIÓN Y CARACTERIZACIÓN DEL MATERIAL EXTRACROMOSOMAL DE LA CEPA (MCG2) DE Sclerotium cepivorum BERK: AGENTE CAUSAL DE LA PUDRICIÓN BLANCA DEL AJO

Patricia Ponce Noyola, Cristhian A. Jiménez Hernández, Adriana Berenice Capetillo Gallegos, Sandra E. González Hernández, Alberto Flores Martínez

Resumen


Resumen  

Sclerotium cepivorum Berk es un hongo imperfecto, causante de la enfermedad conocida como “pudrición blanca del ajo”, impactando negativamente en los cultivares de ajo y cebolla, entre otros de la familia Allium. El hongo es capaz de sobrevivir en el suelo por décadas formando estructuras de resistencia y propagación (esclerocios). Con la finalidad de lograr a mediano plazo un control efectivo de la enfermedad, en el grupo de trabajo nos hemos enfocado a conocer más sobre la biología de este hongo, y hemos detectado que, en algunos de los aislados, está presente material genético extracromosomal (MGE) de diferente tamaño molecular. Con el objetivo de determinar la naturaleza de este material, se emplearon diferentes enfoques bioquímicos y moleculares para purificar e identificar el material extracromosomal. Se identificó que el MGE es RNA de doble cadena, por su resistencia al tratamiento con DNasa I y RNasa A. Dicho material podría provenir de un micovirus multipartita. 

Palabras clave:esclerocios; micovirus; Material Genético Extracromosomal; dsRNA 

 

" IDENTIFICATION AND CHARACTERIZATION OF EXTRACROMOSOMAL MATERIAL OF Sclerotium cepivorum BERK (MCG2) STRAIN: CAUSAL AGENT OF GARLIC WHITE ROT” 

Abstract  

Sclerotium cepivorum Berk is an imperfect fungus that causes the disease known as "white rot of garlic," negatively impacting garlic and onion cultivars, among others of the Allium family. The fungus can survive in the soil for decades, forming resistance and propagation structures (sclerotia). To effectively control the disease in the medium term, the working group has focused on learning more about the biology of this fungus, and we have detected that in some isolates, extrachromosomal genetic material (MGE) of different molecular sizes is present. Various biochemical and molecular approaches were used to purify and identify the extrachromosomal material. The MGE was identified as double-stranded RNA due to its resistance to DNase I and RNase A treatment. Such material could come from a multipartite mycovirus. 

Keywords:sclerotia; micovirus; Extracromosomal Genetic Material; dsRNA 


Texto completo:

PDF

Referencias


Referencias bibliográficas

Ausubel F.M. & col. (2003). Current Protocols in Molecular Biology (vol. 1, John Wiley &Sons Inc Ed). ISBN047150338X

Buck K. W. (1998). Molecular variability of viruses of fungi. Bridge P. D., Couteaudier Y., Clackson J. M. (Eds.) Molecular Variability of fungal Pathogens. CAB International,53-72. SBN:9780851992662

Chu Y.M., Lim W.S., Yea S.J., Cho J.D., Lee Y.W. & Kim K.H. (2004). Complexity of dsRNA Mycovirus Isolated from Fusarium graminearum. Virus Genes, 28(1), 135-143. doi: 10.1023/B:VIRU.0000012270.67302.35

Coley-Smith J.R., Mitchell C.M. & Sansford C.E. (1990). Long-term survival of sclerotia of Sclerotium cepivorum and Stromatinia gladioli. Plant Pathology, 39, 58–69. doi.org/10.1111/j.1365-3059.1990.tb02476.x.

Condit C. & Fraenkel-Conrat H. (1979). Isolation of replicative forms of 3’ terminal subgenomic RNAs of tobacco necrosis virus. Virolog,y 97, 122-30. DOI:10.1016/0042- 6822(79)90378-7

Craven M., Pawlyk D., Choi G.H., & Nuss D.L. (1993). Papain-like protease p29 as a symptom determinant encoded by a hypovirulence-associated virus of the chestnut blight fungus. Journal of Virology, 67, 6513–6521. doi: 10.1128/JVI.67.11.6513-6521.1993

Crowe F.J. & Hall D.H. (1979). Vertical distribution of Sclerotia of Sclerotium cepivorum and host root systems relative to white rot of onion and garlic. Phytopathology, 70, 70-73.

Crowe F.J., Darnell T., Thornton M., Davis M., Mcgrath D., Koepsell P., Redondo E. & Laborde J. (1993). White rot control studies show promise of better future. Onion World, 9, 22-25.

Day P.R., Dodds J.A., Elliston J.E., Jaynes R.A. & Anagnostakis S.L. (1977). Double-stranded RNA in Endothia parasitica. Phytopathology, 67, 1393-1396. DOI: 10.1094/Phyto-67-1393

Dey P.M. & Harborne J.B. (1997). Plant Biochemistry. Academic Press Ed.

Gómez-Miranda B. & Leal J.A. (1981). Extracellular and cell wall polysaccharides of Aspergillus alliaceus. Transactions of the British Mycological Society, 76(2), 249-253. oi.org/10.1016/S0007-1536(82)80016-8

Hansen D.R., Van-Alfen N.K., Gillies K. & Powell W.A. (1985). Naked dsRNA associated with Hypovirulence of Endothia parasitica Is Packaged in Fungal Vesicles. Journal of General Virology, 66, 2605-2614.

Hendy, S., Chen, Z.C., Barker, H., Santa Cruz, S., Chapman, S., Torrance, L., Cockburn, W. & Whitelam, G.C. (1999). Rapid production of single-chain Fv fragments in plants using a potato virus X episomal vector. Journal of. Immunologycal Methods, 231, 137-146. doi: 10.1016/s0022-1759(99)00150-7.

Herrero-Asensio, N. (2011). Micovirus asociados a los hongos endofíticos y entomopatógenos Tolypocladium cylindrosporum y Beauveria bassiana. Universidad de Salamanca. CSIC- Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA).

Howitt, R.L.J., Beever, R.E., Pearson, M.N. & Foster, R.L.S. (2001). Genome characterization of Botrytis virus F, a flexuous rod-shaped mycovirus resembling plant ´potex-like´ viruses. The Journal of General virology, 82, 67-78. DOI: 10.1099/0022-1317-82-1-67

Howitt, R.L.J., Beever, R.E., Pearson, M.N. & Forster, R.L.S. (2006). Genome characterization of a flexuous rod-shaped mycovirus, Botrytis virus X, reveals high amino acid identity to genes from plant ´potex-like´ viruses. Archives of virology, 151(3), 563–579. doi: 10.1007/s00705-005-0621-y

Kopertekh, L., Juettner, G. & Schiemann, J. (2004). Site-specific recombination induced in transgenic plants by PVX virus vector expressing bacteriophage P1 recombinase. Plant Science, 166, 485-492. 10.1016/j.plantsci.2003.10.018

Kuttler F. & Sabine M. (2007). Formation of non-random extra chromosomal elements during development, differentiation and onco genesis. Seminars in Cancer Biology, 17(1), 56-64. doi: 10.1016/j.semcancer.2006.10.007

Li P, Bhattacharjee P, Wang S, Zhang L, Ahmed I, & Guo L. (2019). Mycoviruses in Fusarium Species: An Update. Frontiers in Cellular and Infection Microbiology, 18, 9:257. doi: 10.3389/fcimb.2019.00257.

Luna-Martínez F. & Ponce Noyola P (2001). Caracterización molecular de aislados de Sclerotium cepivorum mediante análisis de polimorfismos de los fragmentos amplificados al azar. ACTA UNIVERSITARIA Vol. 11 No. 2 Agosto 2001

Marzano S.L, Nelson B.D, Ajayi-Oyetunde O, Bradley C.A, Hughes T.J, Hartman G.L, Eastburn D.M, & Domier L.L. (2016). Identification of diverse mycoviruses through metatranscriptomics characterization of the viromes of five major fungal plant pathogens. Journal of virology, 90(15), 6846–6863. DOI: 10.1128/JVI.00357-16

McCabe P.M., Pfeiffer P. & Van Alfen N. K. (1999). The influence of dsRNA viruses on the biology of plant pathogenic fungi. Trends in microbiology, 7(9), 377-381. doi: 10.1016/s0966-842x(99)01568-1

Nuss D.L. (1992). Biological control of chestnut blight: an example of virus-mediated attenuation of fungal pathogenesis. Microbiology Reviews, 56(4), 561. doi: 10.1128/mr.56.4.561-576.1992

Nuss D.L. (2005). Hypovirulence: mycoviruses at the fungal–plant interface. Nature reviews Microbiology, 3, 632–642. doi: 10.1038/nrmicro1206

Park C.M., Banerjee N., Koltin Y., & Bruenn J.A. (1996). The Ustilago maydis virally encoded KP1 killer toxin. Molecular Microbiology, 20, 957-963. doi: 10.1111/j.1365-2958.1996.tb02537.x

Pearson, M.N., Beever, R.E., Bione, B. & Arthur, K. (2009). Mycovirus of filamentous fungi and their relevance to plant pathology. Molecular Plant Pathology, 10, 115-128. doi: 10.1111/j.1364-3703.2008.00503.x

Raeder U. & Broda P. (1985). Rapid preparation of DNA from filamentous fungi. Letters in Applied Microbiology 1(1), 17-20. DOI:10.1111/j.1472-765X.1985.tb01479.x

Reyes-Pérez N., Marbán-Mendoza N., Delgadillo-Sánchez F. & De la Torre-Almaráz R. (2003). Variabilidad en aislamientos de Sclerotium cepivorum Berk y su relación con ARN de cadena doble. Agrociencia, 17(5), 495-502.

Rochon D., Kakani, K., Robbins, M. & Reade, R. (2004). Molecular aspects of plant virus transmission by olpidium and plasmodiophorid vectors. Annual review of phytopathology, 42, 211-241. doi: 10.1146/annurev.phyto.42.040803.140317

Rodríguez García C., Medina, V., Alonso, A. & Ayllón, M.A. (2014). Mycoviruses of Botrytis cinerea isolates from different hosts. Annals of Applied Biology, 164, 46-61. doi.org/10.1111/aab.12073

Rush M. & Misra R. (1985) Extrachromosomal DNA in eukaryotes. Plasmid 14(3), 177-191.

Sabanadzovic S., Valverde, R.A., Brown, J.K., Martin, R.R. & Tzanetakis, I.E. (2009). Southern tomato virus: The link between the families Totiviridae and Partitiviridae. Virus Research, 140, 130-137. DOI: 10.1016/j.virusres.2008.11.018

Sammour R. H., Mahmoud A.G., Mustafa A.A. & Alhoziem R. (2011). Biology, controlling and genetic variability in Sclerotium cepivorum Berk; the causal agent of Allium white rot disease. Trends in Microbiology, 7, 101-111. DOI:10.1111/j.0032-0862.2004.01013.x

Shivprasad S., Pogue, G.P., Lewandowski, D.J., Hidalgo, J., Donson, J., Grill, L.K. & Dawson, W.O. (1999). Heterologous sequences greatly affect foreign gene expression in Tobaco mosaic virus-based vectors. Virology, 225, 312-323. doi: 10.1006/viro.1998.9579

Sinden J.W. & Hauser E. (1950). Report on two new mushroom diseases Mushroom Science, 1, 96-100.

Smolenska L., Roberts, I.M., Learmonth, D., Porter, A.J., Harris, W.J., Wilson, T.A. & Santa-Cruz, S. (1998.) Production of a functional single chain antibody attached to the surface of a plant virus. FEBS Letters, 441, 379-382.

Wagner B., Fuchs, H., Adhami, F., Ma, Y., Scheiner, O. & Breiteneder, H. (2004). Plant virus expression systems for transient production of recombinant allergens in Nicotiana benthamiana. Methods, 32, 227-234. doi: 10.1016/j.ymeth.2003.08.005

Xie J., Wei D., Jiang D., Fu Y., Li G., Ghabrial S & col. (2006). Characterization of debilitation-associated mycovirus infecting the plant-pathogenic fungus Sclerotinia sclerotiorum. Journal of General Virology, 87(1), 241-249. doi: 10.1099/vir.0.81522-0

Xie, J., Xiao, X., Fu, Y., Liu, H., Cheng, J., Ghabrial, S. A., et al. (2011). A novel mycovirus closely related to hypoviruses that infects the plant pathogenic fungus Sclerotinia sclerotiorum. Virology, 418, 49–56. doi: 10.1016/j.virol.2011.07.008

Yokoi, T., Yakemoto, Y., Suzuki, M., Yamashita, S. & Hibi, T. (1999). The nucleotide sequence and genome organization of Sclerophthora macrospora Virus B. Virology, 264, 344-349. doi: 10.1006/viro.1999.0018

Yokoi, T., Yamashita, S., & Hibi, T. (2003). The nucleotide sequence and genome organization of Sclerophthora macrospora virus A. Virology, 311, 394-399. doi: 10.1016/s0042-6822(03)00183-1


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.