DEL VERTEDERO AL CAMPO: BIOTRANSFORMACIÓN DE RESIDUOS

Luz Andrea Gutiérrez Ramírez, Sergio Iván Martínez Guido, Claudia Gutiérrez Antonio, Valeria Caltzontzin Rabell

Resumen


En 2020, México generó más de 300,000 toneladas de residuos ricos en nutrientes de la producción agrícola sin recibir tratamiento adecuado, siendo llevados a vertederos con graves consecuencias ambientales y de salud. Por ello, se han intensificado los esfuerzos para desarrollar tratamientos alineados con la economía circular, destacando los tratamientos biológicos que favorecen el reciclaje de nutrientes, lo cual resulta esencial para la sostenibilidad. Entre estos residuos agrícolas se encuentran el frass y el residuo de la poda de fresa. El cultivo de larva de mosca soldado (Hermetiaillucens) ha ganado popularidad por su alta eficiencia de conversión, pero su subproducto, el frass, propuesto como fuente de nutrición vegetal, muestra resultados contradictorios y signos de inestabilidad y pérdida de nitrógeno. Por otro lado, el residuo de poda de fresa es generado en cantidades significativas en el bajío mexicano, con un alto aporte de fósforo que puede ser reinsertado en la cadena de suministro; además, al ser constituido principalmente de lignocelulosa, se perfila como un agente aglutinante. La vermicomposta es un tratamiento biológico que, con lombrices de tierra y microorganismos, convierte sustratos orgánicos en compostas ricas en nutrientes, mejorando su estabilidad y la fijación de nutrientes según la proporción de C/N de los residuos. Así, este trabajo revisó, de manera crítica, estudios de los últimos 15 años sobre la estabilización de residuos con lombrices, el potencial del frass como fertilizante y la problemática de los fertilizantes químicos. Se propone someter mezclas de frass y poda de fresa a vermicomposta para reintegrarlo como un fertilizante natural en la agricultura, buscando así una gestión más responsable y sostenible de los recursos agrícolas.

Texto completo:

PDF

Referencias


Alattar, M., Alattar, F., & Popa, R. (2016). Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays). Plant Science Today, 3(1), 57–62.

Alidadi, H., Najafpoor, A. A., Hosseinzadeh, A., Dolatabadi Takabi, M., Esmaili, H., Zanganeh, J., & Piranloo, F. G. (2016). Waste recycling by vermicomposting: Maturity and quality assessment via dehydrogenase enzyme activity, lignin, water soluble carbon, nitrogen, phosphorous and other indicators. Journal of Environmental Management, 182, 134–140.

Barrera Valdivia, I., Hernández García, G., & Mendoza Méndez, C. E. (2022). Los rellenos sanitarios, una solución paliativa a la problemática de residuos sólidos en Zamora, Michoacán, México. LATAM Revista Latinoamericana de Ciencias Sociales y Humanidades, 3(2), 1111–1126.

Beesigamukama, D., Subramanian, S., & Tanga, C. M. (2022). Nutrient quality and maturity status of FLMS fertilizer from nine edible insects. Scientific Reports, 12(1).

Campbell, B. M., Beare, D. J., Bennett, E. M., Hall-Spencer, J. M., Ingram, J. S. I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the earth system exceeding planetary boundaries. Ecology and Society, 22(4).

Carrillo-Nieves, D., Rostro Alanís, M. J., de la Cruz Quiroz, R., Ruiz, H. A., Iqbal, H. M. N., & Parra-Saldívar, R. (2019). Current status and future trends of bioethanol production from agro-industrial wastes in Mexico. Renewable and Sustainable Energy Reviews, 102(November 2018), 63–74.

Chen, Y., Zhang, Y., Shi, X., Shi, E., Zhao, Y., Zhang, Y., & Xu, L. (2023). The contribution of earthworms to carbon mineralization during vermicomposting of maize stover and cow dung. Bioresource Technology, 368.

Chiam, Z., Lee, J. T. E., Tan, J. K. N., Song, S., Arora, S., Tong, Y. W., & Tan, H. T. W. (2021). Evaluating the potential of okara-derived black soldier fly larval FLMS as a soil amendment. Journal of Environmental Management, 286, 112163.

Choi, Y.-C., Choi, J.-Y., Kim, J.-G., Kim, M.-S., Kim, W.-T., Park, K.-H., Bae, S.-W., & Jeong, G.-S. (2009). Potential Usage of Food Waste as a Natural Fertilizer after Digestion by Hermetia illucens (Diptera: Stratiomyidae). International Journal of Industrial Entomology, 19.

Cubero-Cardoso, J., Serrano, A., Trujillo-Reyes, Á., K. Villa-Gómez, D., Borja, R., & G. Fermoso, F. (2021). Valorization Options of Strawberry Extrudate Agro-Waste. A Review. IntechOpen.

Dulaurent, A. M., Daoulas, G., Faucon, M. P., & Houben, D. (2020). Earthworms (Lumbricus terrestris L.) mediate the fertilizing effect of FLMS. Agronomy, 10(6).

FAOSTAT. (2024). Emisiones de cultivos. Recuperado el 30 de enero de 2024, de https://www.fao.org/faostat/en/#data/GA

Fernández-Gómez, M. J., Nogales, R., Plante, A., Plaza, C., & Fernández, J. M. (2015). Application of a set of complementary techniques to understand how varying the proportion of two wastes affects humic acids produced by vermicomposting. Waste Management, 35, 81–88.

García-Sánchez, M., Taušnerová, H., Hanč, A., & Tlustoš, P. (2017). Stabilization of different starting materials through vermicomposting in a continuous-feeding system: Changes in chemical and biological parameters. Waste Management, 62, 33–42.

Gärttling, D., Kirchner, S. M., & Schulz, H. (2020). Assessment of the n- And p-fertilization effect of black soldier fly (diptera: Stratiomyidae) by-products on maize. Journal of Insect Science, 20(5), 1–11.

Gärttling, D., & Schulz, H. (2021). Compilation of Black Soldier Fly FLMS Analyses. Journal of Soil Science and Plant Nutrition.

Guidini Lopes, I., Yong, J. W., & Lalander, C. (2022). FLMS derived from black soldier fly larvae treatment of biodegradable wastes. A critical review and future perspectives. In Waste Management ,(142) 65–76.

Kawasaki, K., Kawasaki, T., Hirayasu, H., Matsumoto, Y., & Fujitani, Y. (2020). Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens). Sustainability, 12(12).

Liew, C.S., Yunus, N.M., Chidi, B.S., Lam, M.K., Goh, P.S., Mohamad, M., Sin, J.C., Lam, S.M., Lim, J.W., Lam, S.S. (2022). A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting. Journal of Hazardous Materials, 423, 126995.

León, L. L., Guzmán, O. L. D. A., Garcia, B. J. A., Chávez, M. C. G., & Peña, C. J. J. (2014). Consideraciones para mejorar la competitividad de la región“El Bajío” en la producción nacional de fresa. Revista Mexicana de Ciencias Agrícolas, 5(4), 673–686.

Lohri, C. R., Diener, S., Zabaleta, I., Mertenat, A., & Zurbrügg, C. (2017). Treatment technologies for urban solid biowaste to create value products: a review with focus on low- and middle-income settings. Environmental Science and Biotechnology, 16 (1) 81–130.

Lv, B., Xing, M., & Yang, J. (2016). Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresource Technology, 209, 397–401.

Menino, R., Felizes, F., Castelo-Branco, M. A., Fareleira, P., Moreira, O., Nunes, R., & Murta, D. (2021). Agricultural value of Black Soldier Fly larvae FLMS as organic fertilizer on ryegrass. Heliyon, 7(1).

Morari, F., Vellidis, G., & Gay, P. (2011). Nitrogen Cycle, Fertilizers, and N Loss Pathways.

Njoku, P. O., Edokpayi, J. N., & Odiyo, J. O. (2019). Health and environmental risks of residents living close to a landfill: A case study of thohoyandou landfill, Limpopo province, South Africa. International Journal of Environmental Research and Public Health, 16(12).

Parthasarathi, K., Balamurugan, M., Prashija, K. V., Jayanthi, L., & Ameer Basha, S. (2016). Potential of Perionyx excavatus (Perrier) in lignocellulosic solid waste management and quality vermifertilizer production for soil health. International Journal of Recycling of Organic Waste in Agriculture, 5(1), 65–86.

Poveda, J. (2021). Insect FLMS in the development of sustainable agriculture. A review. Agronomy for Sustainable Development, 41(5).

Quilliam, R. S., Nuku-Adeku, C., Maquart, P., Little, D., Newton, R., & Murray, F. (2020). Integrating insect FLMS biofertilisers into sustainable peri-urban agro-food systems. Journal of Insects as Food and Feed, 6(3), 315–322.

Ravi, H. K., Degrou, A., Costil, J., Trespeuch, C., Chemat, F., & Vian, M. A. (2020). Larvae mediated valorization of industrial, agriculture and food wastes: Biorefinery concept through bioconversion, processes, procedures, and products. Processes, 8 (7).

Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2).

Rummel, P. S., Beule, L., Hemkemeyer, M., Schwalb, S. A., & Wichern, F. (2021). Black Soldier Fly Diet Impacts Soil Greenhouse Gas Emissions From FLMS Applied as Fertilizer. Frontiers in Sustainable Food Systems, 5, 1–17.

Saravanan, A., Karishma, S., Senthil Kumar, P., & Rangasamy, G. (2023). A review on regeneration of biowaste into bio-products and bioenergy: Life cycle assessment and circular economy. Fuel, 338, 127221.

Schmitt, E., & de Vries, W. (2020). Potential benefits of using Hermetia illucens FLMS as a soil amendment on food production and for environmental impact reduction. Current Opinion in Green and Sustainable Chemistry 25.

Secretaría de Agricultura y Desarrollo Rural. (2022). Norma que establece los métodos y procedimientos para el tratamiento aerobio de la fracción orgánica de los residuos sólidos urbanos y de manejo especial, así como la información comercial y de sus parámetros de calidad de los productos finales., pub. l. no. NMX-AA-180-SCFI-2018. https://biblioteca.semarnat.gob.mx/janium/Documentos/Ciga/agenda/PPD1/NMX-AA-180-SCFI-2018.pdf

Secretaría de Medio Ambiente y Recursos Naturales (2017). Residuos Sólidos Urbanos (RSU). Información sobre residuos sólidos urbanos. Recuperado el 31 de enero de 2023, de https://www.gob.mx/semarnat/acciones-y-programas/residuos-solidos-urbanos-rsu.

Sharma, K., & Garg, V. K. (2019). Vermicomposting of waste: A zero-waste approach for waste management. In Sustainable Resource Recovery and Zero Waste Approaches.

Singh, S., Singh, J., Kandoria, A., Quadar, J., Bhat, S. A., Chowdhary, A. B., & Vig, A. P. (2020). Bioconversion of different organic waste into fortified vermicompost with the help of earthworm: A comprehensive review. International Journal of Recycling of Organic Waste in Agriculture, 9 (4) 423-439.

Sudkolai, S. T., & Nourbakhsh, F. (2017). Urease activity as an index for assessing the maturity of cow manure and wheat residue vermicomposts. Waste Management, 64, 63–66.

Swarnam, T. P., Velmurugan, A., Pandey, S. K., & Dam Roy, S. (2016). Enhancing nutrient recovery and compost maturity of coconut husk by vermicomposting technology. Bioresource Technology, 207, 76–84.

Tan, J. K. N., Lee, J. T. E., Chiam, Z., Song, S., Arora, S., Tong, Y. W., & Tan, H. T. W. (2021). Applications of food waste-derived black soldier fly larval FLMS as incorporated compost, side-dress fertilizer and FLMS-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. Waste Management, 130, 155–166.

Thomas, G. V., Mathew, A. E., Baby, G., & Mukundan, M. K. (2019). Bioconversion of Residue Biomass from a Tropical Homestead Agro-Ecosystem to Value Added Vermicompost by Eudrilus Species of Earthworm. Waste and Biomass Valorization, 10(7), 1821–1831.

Timsina, J. (2018). Can organic sources of nutrients increase crop yields to meet global food demand? Agronomy, 8, (10) 1–20.

Yakovleva, N., Chiwona, A. G., Manning, D. A. C., & Heidrich, O. (2021). Circular economy and six approaches to improve potassium life cycle for global crop production. Resources Policy, 74, 102426.

Yu, Y., Yu, Z., Sun, P., Lin, B., Li, L., Wang, Z., Ma, R., Xiang, M., Li, H., & Guo, S. (2018). Effects of ambient air pollution from municipal solid waste landfill on children’s non-specific immunity and respiratory health. Environmental Pollution, 236, 382–390.

Zhu, W., Yao, W., Shen, X., Zhang, W., & Xu, H. (2018). Heavy metal and δ13C value variations and characterization of dissolved organic matter (DOM) during vermicomposting of pig manure amended with 13C-labeled rice straw. Environmental Science and Pollution Research, 25(20), 20169–20178.


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.