FITOHORMONAS EN MICROORGANISMOS: FUNCIONES MÁS ALLÁ DE LA SIMBIOSIS

Jonathan Duran-Palmerin, Francisco Vargas-Gasca, Vianey Olmedo-Monfil

Resumen


Las hormonas vegetales, o fitohormonas, son compuestos químicos producidos por plantas, que coordinan todos los aspectos de su fisiología, regulando el crecimiento, diferenciación y morfogénesis, así como las respuestas a estímulos ambientales bióticos y abióticos. Las más estudiadas son ácido salicílico (SA), jasmonato (JA), etileno (ET), auxinas, citoquininas (CKs), ácido abscísico (ABA) y giberelinas (GAs). En plantas, las fitohormonas regulan también interacciones con microorganismos, la producción de fitohormonas por otros organismos ha recibido menos atención. Se ha reportado su síntesis en bacterias, hongos y protozoos. Sin embargo, se conoce poco sobre la función biológica en estos sistemas. En esta revisión describiremos brevemente la información disponible acerca de los microorganismos que producen fitohormonas, vislumbrado el posible papel que desempeñan en la fisiología microbiana, más allá de servir como mediadores para la interacción planta-microorganismo.

Texto completo:

PDF

Referencias


Ali, M. S. y Baek, K. H. (2020). Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/IJMS21020621

Amborabé, B. E., Fleurat-Lessard, P., Chollet, J. F., y Roblin, G. (2002). Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship. Plant Physiology and Biochemistry, 40(12), 1051–1060. https://doi.org/10.1016/S0981-9428(02)01470-5

An, C. y Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53(6), 412–428. https://doi.org/10.1111/J.1744-7909.2011.01043.X

Andrabi, S. B. A., Tahara, M., Matsubara, R., Toyama, T., Aonuma, H., Sakakibara, H., Suematsu, M., Tanabe, K., Nozaki, T., y Nagamune, K. (2018). Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitology International, 67(1), 47–58. https://doi.org/10.1016/J.PARINT.2017.03.003

Andryukov, B., Mikhailov, V., y Besednova, N. (2019). The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. Journal of Marine Science and Engineering 2019, 7(6), 176. https://doi.org/10.3390/JMSE7060176

Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., y Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373–382. https://doi.org/10.1007/S00203-006-0103-Y/TABLES/5

Binder, B. M. (2020). Ethylene signaling in plants. The Journal of Biological Chemistry, 295(22), 7710. https://doi.org/10.1074/JBC.REV120.010854

Boya, P., Codogno, P., y Rodriguez-Muela, N. (2018). Autophagy in stem cells: Repair, remodelling and metabolic reprogramming. Development (Cambridge), 145(4). https://doi.org/10.1242/DEV.149344/48589

Brookbank, B. P., Patel, J., Gazzarrini, S., y Nambara, E. (2021). Role of Basal ABA in Plant Growth and Development. Genes, 12(12). https://doi.org/10.3390/GENES12121936

Casanova-Sáez, R., Mateo-Bonmatí, E., y Ljung, K. (2021). Auxin Metabolism in Plants. Cold Spring Harbor Perspectives in Biology, 13(3), 1–23. https://doi.org/10.1101/CSHPERSPECT.A039867

Cen, Y. K., Lin, J. G., Wang, Y. L., Wang, J. Y., Liu, Z. Q., y Zheng, Y. G. (2020). The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Frontiers in Bioengineering and Biotechnology, 8, 499608. https://doi.org/10.3389/FBIOE.2020.00232/BIBTEX

Chagué, V. (2010). Ethylene Production by Fungi: Biological Questions and Future Developments Towards a Sustainable Polymers Industry. En Timmis, K.N. (Eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. (pp.3011-3020). https://doi.org/10.1007/978-3-540-77587-4_224

Chagué, V., Danit, L. V., Siewers, V., Schulze-Gronover, C., Tudzynski, P., Tudzynski, B., & Sharon, A. (2007). Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?. Molecular Plant-Microbe Interactions: MPMI, 19(1), 33–42. https://doi.org/10.1094/MPMI-19-0033

Chanclud, E., Kisiala, A., Emery, N. R. J., Chalvon, V., Ducasse, A., Romiti-Michel, C., Gravot, A., Kroj, T., y Morel, J. B. (2016). Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence. PLOS Pathogens, 12(2), e1005457. https://doi.org/10.1371/JOURNAL.PPAT.1005457

Chanclud, E. & Morel, J. B. (2016). Plant hormones: a fungal point of view. Molecular Plant Pathology, 17(8), 1289–1297. https://doi.org/10.1111/MPP.12393

Chen, Y. C., Qiang, G. F. & Du, G. H. (2021). Salicylic Acid. Natural Small Molecule Drugs from Plants, 455–460. https://doi.org/10.1007/978-981-10-8022-7_76

Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C. & López-Bucio, J. (2009). Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis. Plant Physiology, 149(3), 1579. https://doi.org/10.1104/PP.108.130369

Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92(4). https://doi.org/10.1093/FEMSEC/FIW036

De Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., Bögre, L. & Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5), 1434. https://doi.org/10.1038/SJ.EMBOJ.7601575

Dempsey, D. A., Vlot, A. C., Wildermuth, M. C. & Klessig, D. F. (2011). Salicylic Acid Biosynthesis and Metabolism. Https://Doi.Org/10.1199/Tab.0156, 2011(9), e0156. https://doi.org/10.1199/TAB.0156

Dubois, M., Van den Broeck, L. & Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 23(4), 311. https://doi.org/10.1016/J.TPLANTS.2018.01.003

Eichmann, R., Richards, L. & Schäfer, P. (2021). Hormones as go‐betweens in plant microbiome assembly. The Plant Journal, 105(2), 518. https://doi.org/10.1111/TPJ.15135

Eng, F., Marin, J. E., Zienkiewicz, K., Gutiérrez-Rojas, M., Favela-Torres, E. & Feussner, I. (2021). Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ, 9. https://doi.org/10.7717/PEERJ.10873

Fonseca, S., Radhakrishnan, D., Prasad, K. & Chini, A. (2018). Fungal Production and Manipulation of Plant Hormones. Current Medicinal Chemistry, 25(2), 253–267. https://doi.org/10.2174/0929867324666170314150827

Großkinsky, D. K., Tafner, R., Moreno, M. V., Stenglein, S. A., De Salamone, I. E. G., Nelson, L. M., Novák, O., Strnad, M., Van Der Graaff, E. & Roitsch, T. (2016). Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep23310

Guarro, J. (2012). Taxonomía y biología de los hongos causantes de infección en humanos. Enfermedades Infecciosas y Microbiología Clínica, 30(1), 33–39. https://doi.org/10.1016/J.EIMC.2011.09.006

Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V. & Herrera-Estrella, A. (2019). Trichoderma species: Versatile plant symbionts. Phytopathology, 109(1), 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW/ASSET/IMAGES/LARGE/PHYTO-07-18-0218-RVW_F2.JPEG

Hinsch, J., Vrabka, J., Oeser, B., Novák, O., Galuszka, P. & Tudzynski, P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environmental Microbiology, 17(8), 2935–2951. https://doi.org/10.1111/1462-2920.12838/SUPPINFO

Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R. & Monte, E. (2021). Phytohormone Production Profiles in Trichoderma Species and Their Relationship to Wheat Plant Responses to Water Stress. Pathogens 2021, Vol. 10, Page 991, 10(8), 991. https://doi.org/10.3390/PATHOGENS10080991

Ishii, T., Shrestha, Y. H., Matsumoto, I., & Kadoya, K. (1996). Effect of Ethylene on the Growth of Vesicular-Arbuscular Mycorrhizal Fungi and on the Mycorrhizal Formation of Trifoliate Orange Roots. Journal of the Japanese Society for Horticultural Science, 65(3), 525–529. https://doi.org/10.2503/JJSHS.65.525

Izquierdo-Bueno, I., González-Rodríguez, V. E., Simon, A., Dalmais, B., Pradier, J. M., Le Pêcheur, P., Mercier, A., Walker, A. S., Garrido, C., Collado, I. G. & Viaud, M. (2018). Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environmental Microbiology, 20(7), 2469–2482. https://doi.org/10.1111/1462-2920.14258

Kejela, T. & Kejela, T. (2024). Phytohormone-Producing Rhizobacteria and Their Role in Plant Growth. New Insights Into Phytohormones. https://doi.org/10.5772/INTECHOPEN.1002823

Kępczyńska, E. (1994). Involvement of ethylene in spore germination and mycelial growth of Alternaria alternata. Mycological Research, 98(1), 118–120. https://doi.org/10.1016/S0953-7562(09)80348-1

Keswani, C., Singh, S. P., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Rajput, V. D., Minkina, T. M., Ortiz, A. & Sansinenea, E. (2022). Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. Journal of Applied Microbiology, 132(3), 1597–1615. https://doi.org/10.1111/JAM.15348

Khalid, A., Tahir, S., Arshad, M. & Zahir, Z. A. (2004). Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Soil Research, 42(8), 921–926. https://doi.org/10.1071/SR04019

Kilaru, A., Bailey, B. A. & Hasenstein, K. H. (2007). Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiology Letters, 274(2), 238–244. https://doi.org/10.1111/J.1574-6968.2007.00837.X

Korasick, D. A., Enders, T. A. & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541–2555. https://doi.org/10.1093/JXB/ERT080

Koul, B., Chopra, M., & Lamba, S. (2022). Microorganisms as biocontrol agents for sustainable agriculture. Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1: Microbial Products for Sustainable Ecosystem Services, 45–68. https://doi.org/10.1016/B978-0-323-89938-3.00003-7

Kumar, A., Singh, A., Kumar, P. & Sarkar, A. K. (2019). Giberellic Acid-Stimulated Transcript Proteins Evolved through Successive Conjugation of Novel Motifs and Their Subfunctionalization. Plant Physiology, 180(2), 998. https://doi.org/10.1104/PP.19.00305

Leontovyčová, H., Trdá, L., Dobrev, P. I., Šašek, V., Gay, E., Balesdent, M. H. & Burketová, L. (2020). Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Research in Microbiology, 171(5–6), 174–184. https://doi.org/10.1016/J.RESMIC.2020.05.001

Lievens, L., Pollier, J., Goossens, A., Beyaert, R. & Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 8, 260123. https://doi.org/10.3389/FPLS.2017.00587/BIBTEX

Luo, K., Rocheleau, H., Qi, P. F., Zheng, Y. L., Zhao, H. Y. & Ouellet, T. (2016). Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biology, 120(9), 1135–1145. https://doi.org/10.1016/J.FUNBIO.2016.06.002

Macías-Rodríguez, L., Contreras-Cornejo, H. A., Adame-Garnica, S. G., del-Val, E., & Larsen, J. (2020). The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiological Research, 240, 126552. https://doi.org/10.1016/J.MICRES.2020.126552

Masondo, N. A., Gupta, S., Moyo, M. & Aremu, A. O. (2024). Editorial: The application of phytohormones in plant biotechnology for sustainable agriculture. Frontiers in Plant Science, 15, 1382055. https://doi.org/10.3389/FPLS.2024.1382055/BIBTEX

Matsubara, R., Aonuma, H., Kojima, M., Tahara, M., Andrabi, S. B. A., Sakakibara, H. & Nagamune, K. (2015). Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome. PLOS ONE, 10(10), e0140559. https://doi.org/10.1371/JOURNAL.PONE.0140559

Mishra, A. K. & Baek, K. H. (2021). Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules, 11(5). https://doi.org/10.3390/BIOM11050705

Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S. & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35. https://doi.org/10.1016/J.BTRE.2022.E00748

Nagahama, K., Ogawa, T., Fujii, T., & Fukuda, H. (1992). Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. Journal of Fermentation and Bioengineering, 73(1), 1–5. https://doi.org/10.1016/0922-338X(92)90221-F

Nagamune, K., Hicks, L. M., Fux, B., Brossier, F., Chini, E. N. & Sibley, L. D. (2008). Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature, 451(7175), 207. https://doi.org/10.1038/NATURE06478

Narayanan, Z. & Glick, B. R. (2022). Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms, 10(10). https://doi.org/10.3390/MICROORGANISMS10102008

Ogbera, A. O. & Anaba, E. (2021). Protozoa and Endocrine Dysfunction. Endotext. https://www.ncbi.nlm.nih.gov/books/NBK568562/

Park, S., Kim, A. L., Hong, Y. K., Shin, J. H. & Joo, S. H. (2021). A highly efficient auxin-producing bacterial strain and its effect on plant growth. Journal of Genetic Engineering & Biotechnology, 19(1). https://doi.org/10.1186/S43141-021-00252-W

Pattyn, J., Vaughan-Hirsch, J. & Van de Poel, B. (2021). The regulation of ethylene biosynthesis: a complex multilevel control circuitry. The New Phytologist, 229(2), 770. https://doi.org/10.1111/NPH.16873

Ravanbakhsh, M., Sasidharan, R., Voesenek, L. A. C. J., Kowalchuk, G. A. & Jousset, A. (2018). Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 6(1), 52. https://doi.org/10.1186/S40168-018-0436-1/FIGURES/3

Rolón-Cárdenas, G. A., Arvizu-Gómez, J. L., Soria-Guerra, R. E., Pacheco-Aguilar, J. R., Alatorre-Cobos, F. & Hernández-Morales, A. (2022). The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environmental Geochemistry and Health 2021 44:11, 44(11), 3743–3764. https://doi.org/10.1007/S10653-021-01179-4

Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J. & Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/IJMS20102479

Saidi, A., & Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology, 19(1), 89.

Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-y-Terrón, R. & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiological Research, 208, 85–98. https://doi.org/10.1016/J.MICRES.2018.01.010

Sano, N. & Marion-Poll, A. (2021). ABA Metabolism and Homeostasis in Seed Dormancy and Germination. International Journal of Molecular Sciences, 22(10), 5069. https://doi.org/10.3390/IJMS22105069

Santner, A., Calderon-Villalobos, L. I. A. & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 2009 5:5, 5(5), 301–307. https://doi.org/10.1038/nchembio.165

Sardar, P. & Kempken, F. (2018). Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. PLOS ONE, 13(2), e0192293. https://doi.org/10.1371/JOURNAL.PONE.0192293

Sokolova, M. G., Akimova, G. P. & Vaishlya, O. B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47(3), 274–278. https://doi.org/10.1134/S0003683811030148/METRICS

Spaepen, S. & Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 3(4), 1–13. https://doi.org/10.1101/CSHPERSPECT.A001438

Spence, C. A., Lakshmanan, V., Donofrio, N. & Bais, H. P. (2015). Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Frontiers in Plant Science, 6(DEC), 170475. https://doi.org/10.3389/FPLS.2015.01082/BIBTEX

Trewavas, A. J., & Cleland, R. E. (1983). Is plant development regulated by changes in the concentration of growth substances or by changes in the sensitivity to growth substances?. Trends in Biochemical Sciences, 8(10), 354-357.

Tudzynski, B. (2005). Gibberellin biosynthesis in fungi: Genes, enzymes, evolution, and impact on biotechnology. Applied Microbiology and Biotechnology, 66(6), 597–611. https://doi.org/10.1007/S00253-004-1805-1/FIGURES/7

Vedenicheva, N. & Kosakivska, I. (2023). In search of the phytohormone functions in Fungi:Cytokinins. Fungal Biology Reviews, 45, 100309. https://doi.org/10.1016/J.FBR.2023.100309

Waadt, R., Seller, C. A., Hsu, P. K., Takahashi, Y., Munemasa, S. & Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. Nature Reviews. Molecular Cell Biology, 23(10), 680–694. https://doi.org/10.1038/S41580-022-00479-6

Wang, Y., Mostafa, S., Zeng, W. & Jin, B. (2021). Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/IJMS22168568

Weidner, S., Latz, E., Agaras, B., Valverde, C. & Jousset, A. (2017). Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant and Soil, 410(1–2), 509–515. https://doi.org/10.1007/S11104-016-3094-8/FIGURES/2

Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., Nakajima, M., Yamaguchi, S., Sakakibara, H., Kuroha, T., Hirai, N., Yokota, T., Ohta, H., Kobayashi, Y., Mori, H. & Sakagami, Y. (2010). Plant Hormones. Comprehensive Natural Products II, 9–125. https://doi.org/10.1016/B978-008045382-8.00092-7

Yaeger, R. G. (1996). Protozoa: Structure, Classification, Growth, and Development. Medical Microbiology. https://www.ncbi.nlm.nih.gov/books/NBK8325/

Yang, D.-L., Li, Q., Deng, Y.-W., Lou, Y.-G., Wang, M.-Y., Zhou, G.-X., Zhang, Y.-Y. & He, Z.-H. (2008). Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molecular Plant, 1, 528–537. https://doi.org/10.1093/mp/ssn021


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.