FITOHORMONAS EN MICROORGANISMOS: FUNCIONES MÁS ALLÁ DE LA SIMBIOSIS
Resumen
Texto completo:
PDFReferencias
Ali, M. S. y Baek, K. H. (2020). Jasmonic Acid Signaling Pathway in Response to Abiotic Stresses in Plants. International Journal of Molecular Sciences, 21(2). https://doi.org/10.3390/IJMS21020621
Amborabé, B. E., Fleurat-Lessard, P., Chollet, J. F., y Roblin, G. (2002). Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure–activity relationship. Plant Physiology and Biochemistry, 40(12), 1051–1060. https://doi.org/10.1016/S0981-9428(02)01470-5
An, C. y Mou, Z. (2011). Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology, 53(6), 412–428. https://doi.org/10.1111/J.1744-7909.2011.01043.X
Andrabi, S. B. A., Tahara, M., Matsubara, R., Toyama, T., Aonuma, H., Sakakibara, H., Suematsu, M., Tanabe, K., Nozaki, T., y Nagamune, K. (2018). Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites. Parasitology International, 67(1), 47–58. https://doi.org/10.1016/J.PARINT.2017.03.003
Andryukov, B., Mikhailov, V., y Besednova, N. (2019). The Biotechnological Potential of Secondary Metabolites from Marine Bacteria. Journal of Marine Science and Engineering 2019, 7(6), 176. https://doi.org/10.3390/JMSE7060176
Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., y Defez, R. (2006). Indole-3-acetic acid improves Escherichia coli’s defences to stress. Archives of Microbiology, 185(5), 373–382. https://doi.org/10.1007/S00203-006-0103-Y/TABLES/5
Binder, B. M. (2020). Ethylene signaling in plants. The Journal of Biological Chemistry, 295(22), 7710. https://doi.org/10.1074/JBC.REV120.010854
Boya, P., Codogno, P., y Rodriguez-Muela, N. (2018). Autophagy in stem cells: Repair, remodelling and metabolic reprogramming. Development (Cambridge), 145(4). https://doi.org/10.1242/DEV.149344/48589
Brookbank, B. P., Patel, J., Gazzarrini, S., y Nambara, E. (2021). Role of Basal ABA in Plant Growth and Development. Genes, 12(12). https://doi.org/10.3390/GENES12121936
Casanova-Sáez, R., Mateo-Bonmatí, E., y Ljung, K. (2021). Auxin Metabolism in Plants. Cold Spring Harbor Perspectives in Biology, 13(3), 1–23. https://doi.org/10.1101/CSHPERSPECT.A039867
Cen, Y. K., Lin, J. G., Wang, Y. L., Wang, J. Y., Liu, Z. Q., y Zheng, Y. G. (2020). The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Frontiers in Bioengineering and Biotechnology, 8, 499608. https://doi.org/10.3389/FBIOE.2020.00232/BIBTEX
Chagué, V. (2010). Ethylene Production by Fungi: Biological Questions and Future Developments Towards a Sustainable Polymers Industry. En Timmis, K.N. (Eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. (pp.3011-3020). https://doi.org/10.1007/978-3-540-77587-4_224
Chagué, V., Danit, L. V., Siewers, V., Schulze-Gronover, C., Tudzynski, P., Tudzynski, B., & Sharon, A. (2007). Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions?. Molecular Plant-Microbe Interactions: MPMI, 19(1), 33–42. https://doi.org/10.1094/MPMI-19-0033
Chanclud, E., Kisiala, A., Emery, N. R. J., Chalvon, V., Ducasse, A., Romiti-Michel, C., Gravot, A., Kroj, T., y Morel, J. B. (2016). Cytokinin Production by the Rice Blast Fungus Is a Pivotal Requirement for Full Virulence. PLOS Pathogens, 12(2), e1005457. https://doi.org/10.1371/JOURNAL.PPAT.1005457
Chanclud, E. & Morel, J. B. (2016). Plant hormones: a fungal point of view. Molecular Plant Pathology, 17(8), 1289–1297. https://doi.org/10.1111/MPP.12393
Chen, Y. C., Qiang, G. F. & Du, G. H. (2021). Salicylic Acid. Natural Small Molecule Drugs from Plants, 455–460. https://doi.org/10.1007/978-981-10-8022-7_76
Contreras-Cornejo, H. A., Macías-Rodríguez, L., Cortés-Penagos, C. & López-Bucio, J. (2009). Trichoderma virens, a Plant Beneficial Fungus, Enhances Biomass Production and Promotes Lateral Root Growth through an Auxin-Dependent Mechanism in Arabidopsis. Plant Physiology, 149(3), 1579. https://doi.org/10.1104/PP.108.130369
Contreras-Cornejo, H. A., Macías-Rodríguez, L., del-Val, E., & Larsen, J. (2016). Ecological functions of Trichoderma spp. and their secondary metabolites in the rhizosphere: interactions with plants. FEMS Microbiology Ecology, 92(4). https://doi.org/10.1093/FEMSEC/FIW036
De Torres-Zabala, M., Truman, W., Bennett, M. H., Lafforgue, G., Mansfield, J. W., Rodriguez Egea, P., Bögre, L. & Grant, M. (2007). Pseudomonas syringae pv. tomato hijacks the Arabidopsis abscisic acid signalling pathway to cause disease. The EMBO Journal, 26(5), 1434. https://doi.org/10.1038/SJ.EMBOJ.7601575
Dempsey, D. A., Vlot, A. C., Wildermuth, M. C. & Klessig, D. F. (2011). Salicylic Acid Biosynthesis and Metabolism. Https://Doi.Org/10.1199/Tab.0156, 2011(9), e0156. https://doi.org/10.1199/TAB.0156
Dubois, M., Van den Broeck, L. & Inzé, D. (2018). The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science, 23(4), 311. https://doi.org/10.1016/J.TPLANTS.2018.01.003
Eichmann, R., Richards, L. & Schäfer, P. (2021). Hormones as go‐betweens in plant microbiome assembly. The Plant Journal, 105(2), 518. https://doi.org/10.1111/TPJ.15135
Eng, F., Marin, J. E., Zienkiewicz, K., Gutiérrez-Rojas, M., Favela-Torres, E. & Feussner, I. (2021). Jasmonic acid biosynthesis by fungi: derivatives, first evidence on biochemical pathways and culture conditions for production. PeerJ, 9. https://doi.org/10.7717/PEERJ.10873
Fonseca, S., Radhakrishnan, D., Prasad, K. & Chini, A. (2018). Fungal Production and Manipulation of Plant Hormones. Current Medicinal Chemistry, 25(2), 253–267. https://doi.org/10.2174/0929867324666170314150827
Großkinsky, D. K., Tafner, R., Moreno, M. V., Stenglein, S. A., De Salamone, I. E. G., Nelson, L. M., Novák, O., Strnad, M., Van Der Graaff, E. & Roitsch, T. (2016). Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Scientific Reports 2016 6:1, 6(1), 1–11. https://doi.org/10.1038/srep23310
Guarro, J. (2012). Taxonomía y biología de los hongos causantes de infección en humanos. Enfermedades Infecciosas y Microbiología Clínica, 30(1), 33–39. https://doi.org/10.1016/J.EIMC.2011.09.006
Guzmán-Guzmán, P., Porras-Troncoso, M. D., Olmedo-Monfil, V. & Herrera-Estrella, A. (2019). Trichoderma species: Versatile plant symbionts. Phytopathology, 109(1), 6–16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW/ASSET/IMAGES/LARGE/PHYTO-07-18-0218-RVW_F2.JPEG
Hinsch, J., Vrabka, J., Oeser, B., Novák, O., Galuszka, P. & Tudzynski, P. (2015). De novo biosynthesis of cytokinins in the biotrophic fungus Claviceps purpurea. Environmental Microbiology, 17(8), 2935–2951. https://doi.org/10.1111/1462-2920.12838/SUPPINFO
Illescas, M., Pedrero-Méndez, A., Pitorini-Bovolini, M., Hermosa, R. & Monte, E. (2021). Phytohormone Production Profiles in Trichoderma Species and Their Relationship to Wheat Plant Responses to Water Stress. Pathogens 2021, Vol. 10, Page 991, 10(8), 991. https://doi.org/10.3390/PATHOGENS10080991
Ishii, T., Shrestha, Y. H., Matsumoto, I., & Kadoya, K. (1996). Effect of Ethylene on the Growth of Vesicular-Arbuscular Mycorrhizal Fungi and on the Mycorrhizal Formation of Trifoliate Orange Roots. Journal of the Japanese Society for Horticultural Science, 65(3), 525–529. https://doi.org/10.2503/JJSHS.65.525
Izquierdo-Bueno, I., González-Rodríguez, V. E., Simon, A., Dalmais, B., Pradier, J. M., Le Pêcheur, P., Mercier, A., Walker, A. S., Garrido, C., Collado, I. G. & Viaud, M. (2018). Biosynthesis of abscisic acid in fungi: identification of a sesquiterpene cyclase as the key enzyme in Botrytis cinerea. Environmental Microbiology, 20(7), 2469–2482. https://doi.org/10.1111/1462-2920.14258
Kejela, T. & Kejela, T. (2024). Phytohormone-Producing Rhizobacteria and Their Role in Plant Growth. New Insights Into Phytohormones. https://doi.org/10.5772/INTECHOPEN.1002823
Kępczyńska, E. (1994). Involvement of ethylene in spore germination and mycelial growth of Alternaria alternata. Mycological Research, 98(1), 118–120. https://doi.org/10.1016/S0953-7562(09)80348-1
Keswani, C., Singh, S. P., García-Estrada, C., Mezaache-Aichour, S., Glare, T. R., Borriss, R., Rajput, V. D., Minkina, T. M., Ortiz, A. & Sansinenea, E. (2022). Biosynthesis and beneficial effects of microbial gibberellins on crops for sustainable agriculture. Journal of Applied Microbiology, 132(3), 1597–1615. https://doi.org/10.1111/JAM.15348
Khalid, A., Tahir, S., Arshad, M. & Zahir, Z. A. (2004). Relative efficiency of rhizobacteria for auxin biosynthesis in rhizosphere and non-rhizosphere soils. Soil Research, 42(8), 921–926. https://doi.org/10.1071/SR04019
Kilaru, A., Bailey, B. A. & Hasenstein, K. H. (2007). Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiology Letters, 274(2), 238–244. https://doi.org/10.1111/J.1574-6968.2007.00837.X
Korasick, D. A., Enders, T. A. & Strader, L. C. (2013). Auxin biosynthesis and storage forms. Journal of Experimental Botany, 64(9), 2541–2555. https://doi.org/10.1093/JXB/ERT080
Koul, B., Chopra, M., & Lamba, S. (2022). Microorganisms as biocontrol agents for sustainable agriculture. Relationship Between Microbes and the Environment for Sustainable Ecosystem Services, Volume 1: Microbial Products for Sustainable Ecosystem Services, 45–68. https://doi.org/10.1016/B978-0-323-89938-3.00003-7
Kumar, A., Singh, A., Kumar, P. & Sarkar, A. K. (2019). Giberellic Acid-Stimulated Transcript Proteins Evolved through Successive Conjugation of Novel Motifs and Their Subfunctionalization. Plant Physiology, 180(2), 998. https://doi.org/10.1104/PP.19.00305
Leontovyčová, H., Trdá, L., Dobrev, P. I., Šašek, V., Gay, E., Balesdent, M. H. & Burketová, L. (2020). Auxin biosynthesis in the phytopathogenic fungus Leptosphaeria maculans is associated with enhanced transcription of indole-3-pyruvate decarboxylase LmIPDC2 and tryptophan aminotransferase LmTAM1. Research in Microbiology, 171(5–6), 174–184. https://doi.org/10.1016/J.RESMIC.2020.05.001
Lievens, L., Pollier, J., Goossens, A., Beyaert, R. & Staal, J. (2017). Abscisic acid as pathogen effector and immune regulator. Frontiers in Plant Science, 8, 260123. https://doi.org/10.3389/FPLS.2017.00587/BIBTEX
Luo, K., Rocheleau, H., Qi, P. F., Zheng, Y. L., Zhao, H. Y. & Ouellet, T. (2016). Indole-3-acetic acid in Fusarium graminearum: Identification of biosynthetic pathways and characterization of physiological effects. Fungal Biology, 120(9), 1135–1145. https://doi.org/10.1016/J.FUNBIO.2016.06.002
Macías-Rodríguez, L., Contreras-Cornejo, H. A., Adame-Garnica, S. G., del-Val, E., & Larsen, J. (2020). The interactions of Trichoderma at multiple trophic levels: inter-kingdom communication. Microbiological Research, 240, 126552. https://doi.org/10.1016/J.MICRES.2020.126552
Masondo, N. A., Gupta, S., Moyo, M. & Aremu, A. O. (2024). Editorial: The application of phytohormones in plant biotechnology for sustainable agriculture. Frontiers in Plant Science, 15, 1382055. https://doi.org/10.3389/FPLS.2024.1382055/BIBTEX
Matsubara, R., Aonuma, H., Kojima, M., Tahara, M., Andrabi, S. B. A., Sakakibara, H. & Nagamune, K. (2015). Plant Hormone Salicylic Acid Produced by a Malaria Parasite Controls Host Immunity and Cerebral Malaria Outcome. PLOS ONE, 10(10), e0140559. https://doi.org/10.1371/JOURNAL.PONE.0140559
Mishra, A. K. & Baek, K. H. (2021). Salicylic Acid Biosynthesis and Metabolism: A Divergent Pathway for Plants and Bacteria. Biomolecules, 11(5). https://doi.org/10.3390/BIOM11050705
Mukherjee, A., Gaurav, A. K., Singh, S., Yadav, S., Bhowmick, S., Abeysinghe, S. & Verma, J. P. (2022). The bioactive potential of phytohormones: A review. Biotechnology Reports, 35. https://doi.org/10.1016/J.BTRE.2022.E00748
Nagahama, K., Ogawa, T., Fujii, T., & Fukuda, H. (1992). Classification of ethylene-producing bacteria in terms of biosynthetic pathways to ethylene. Journal of Fermentation and Bioengineering, 73(1), 1–5. https://doi.org/10.1016/0922-338X(92)90221-F
Nagamune, K., Hicks, L. M., Fux, B., Brossier, F., Chini, E. N. & Sibley, L. D. (2008). Abscisic acid controls calcium-dependent egress and development in Toxoplasma gondii. Nature, 451(7175), 207. https://doi.org/10.1038/NATURE06478
Narayanan, Z. & Glick, B. R. (2022). Secondary Metabolites Produced by Plant Growth-Promoting Bacterial Endophytes. Microorganisms, 10(10). https://doi.org/10.3390/MICROORGANISMS10102008
Ogbera, A. O. & Anaba, E. (2021). Protozoa and Endocrine Dysfunction. Endotext. https://www.ncbi.nlm.nih.gov/books/NBK568562/
Park, S., Kim, A. L., Hong, Y. K., Shin, J. H. & Joo, S. H. (2021). A highly efficient auxin-producing bacterial strain and its effect on plant growth. Journal of Genetic Engineering & Biotechnology, 19(1). https://doi.org/10.1186/S43141-021-00252-W
Pattyn, J., Vaughan-Hirsch, J. & Van de Poel, B. (2021). The regulation of ethylene biosynthesis: a complex multilevel control circuitry. The New Phytologist, 229(2), 770. https://doi.org/10.1111/NPH.16873
Ravanbakhsh, M., Sasidharan, R., Voesenek, L. A. C. J., Kowalchuk, G. A. & Jousset, A. (2018). Microbial modulation of plant ethylene signaling: ecological and evolutionary consequences. Microbiome, 6(1), 52. https://doi.org/10.1186/S40168-018-0436-1/FIGURES/3
Rolón-Cárdenas, G. A., Arvizu-Gómez, J. L., Soria-Guerra, R. E., Pacheco-Aguilar, J. R., Alatorre-Cobos, F. & Hernández-Morales, A. (2022). The role of auxins and auxin-producing bacteria in the tolerance and accumulation of cadmium by plants. Environmental Geochemistry and Health 2021 44:11, 44(11), 3743–3764. https://doi.org/10.1007/S10653-021-01179-4
Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J. & Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International Journal of Molecular Sciences, 20(10). https://doi.org/10.3390/IJMS20102479
Saidi, A., & Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology, 19(1), 89.
Salazar-Cerezo, S., Martínez-Montiel, N., García-Sánchez, J., Pérez-y-Terrón, R. & Martínez-Contreras, R. D. (2018). Gibberellin biosynthesis and metabolism: A convergent route for plants, fungi and bacteria. Microbiological Research, 208, 85–98. https://doi.org/10.1016/J.MICRES.2018.01.010
Sano, N. & Marion-Poll, A. (2021). ABA Metabolism and Homeostasis in Seed Dormancy and Germination. International Journal of Molecular Sciences, 22(10), 5069. https://doi.org/10.3390/IJMS22105069
Santner, A., Calderon-Villalobos, L. I. A. & Estelle, M. (2009). Plant hormones are versatile chemical regulators of plant growth. Nature Chemical Biology 2009 5:5, 5(5), 301–307. https://doi.org/10.1038/nchembio.165
Sardar, P. & Kempken, F. (2018). Characterization of indole-3-pyruvic acid pathway-mediated biosynthesis of auxin in Neurospora crassa. PLOS ONE, 13(2), e0192293. https://doi.org/10.1371/JOURNAL.PONE.0192293
Sokolova, M. G., Akimova, G. P. & Vaishlya, O. B. (2011). Effect of phytohormones synthesized by rhizosphere bacteria on plants. Applied Biochemistry and Microbiology, 47(3), 274–278. https://doi.org/10.1134/S0003683811030148/METRICS
Spaepen, S. & Vanderleyden, J. (2011). Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology, 3(4), 1–13. https://doi.org/10.1101/CSHPERSPECT.A001438
Spence, C. A., Lakshmanan, V., Donofrio, N. & Bais, H. P. (2015). Crucial roles of abscisic acid biogenesis in virulence of rice blast fungus Magnaporthe oryzae. Frontiers in Plant Science, 6(DEC), 170475. https://doi.org/10.3389/FPLS.2015.01082/BIBTEX
Trewavas, A. J., & Cleland, R. E. (1983). Is plant development regulated by changes in the concentration of growth substances or by changes in the sensitivity to growth substances?. Trends in Biochemical Sciences, 8(10), 354-357.
Tudzynski, B. (2005). Gibberellin biosynthesis in fungi: Genes, enzymes, evolution, and impact on biotechnology. Applied Microbiology and Biotechnology, 66(6), 597–611. https://doi.org/10.1007/S00253-004-1805-1/FIGURES/7
Vedenicheva, N. & Kosakivska, I. (2023). In search of the phytohormone functions in Fungi:Cytokinins. Fungal Biology Reviews, 45, 100309. https://doi.org/10.1016/J.FBR.2023.100309
Waadt, R., Seller, C. A., Hsu, P. K., Takahashi, Y., Munemasa, S. & Schroeder, J. I. (2022). Plant hormone regulation of abiotic stress responses. Nature Reviews. Molecular Cell Biology, 23(10), 680–694. https://doi.org/10.1038/S41580-022-00479-6
Wang, Y., Mostafa, S., Zeng, W. & Jin, B. (2021). Function and Mechanism of Jasmonic Acid in Plant Responses to Abiotic and Biotic Stresses. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/IJMS22168568
Weidner, S., Latz, E., Agaras, B., Valverde, C. & Jousset, A. (2017). Protozoa stimulate the plant beneficial activity of rhizospheric pseudomonads. Plant and Soil, 410(1–2), 509–515. https://doi.org/10.1007/S11104-016-3094-8/FIGURES/2
Yamaguchi, I., Cohen, J. D., Culler, A. H., Quint, M., Slovin, J. P., Nakajima, M., Yamaguchi, S., Sakakibara, H., Kuroha, T., Hirai, N., Yokota, T., Ohta, H., Kobayashi, Y., Mori, H. & Sakagami, Y. (2010). Plant Hormones. Comprehensive Natural Products II, 9–125. https://doi.org/10.1016/B978-008045382-8.00092-7
Yaeger, R. G. (1996). Protozoa: Structure, Classification, Growth, and Development. Medical Microbiology. https://www.ncbi.nlm.nih.gov/books/NBK8325/
Yang, D.-L., Li, Q., Deng, Y.-W., Lou, Y.-G., Wang, M.-Y., Zhou, G.-X., Zhang, Y.-Y. & He, Z.-H. (2008). Altered Disease Development in the eui Mutants and Eui Overexpressors Indicates that Gibberellins Negatively Regulate Rice Basal Disease Resistance. Molecular Plant, 1, 528–537. https://doi.org/10.1093/mp/ssn021
Enlaces refback
- No hay ningún enlace refback.
Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.
.