SÍNTESIS QUÍMICA VS SÍNTESIS BIOLÓGICA: LA TOXICIDAD DE LAS NANOPARTÍCULAS DE PLATA EN RELACIÓN CON SU ORIGEN
Resumen
RESUMEN
Actualmente, las nanopartículas de plata (AgNPs) son empleadas en diversas áreas debido a las propiedades que adquiere la plata al encontrarse en escalas nanométricas. Existen varios métodos de síntesis de AgNPs a partir de los cuales, por medio de la optimización de parámetros, se pueden generar nanopartículas con diferentes tamaños, formas e incluso recubrimientos; dichas características se relacionan directamente con sus propiedades finales y, por tanto, con las aplicaciones que se les pueden dar. En los últimos años, siguiendo con la tendencia a buscar métodos más amigables con el medio ambiente (y que a su vez rentabilicen la producción de nanomateriales), se ha planteado la posibilidad de generar nanopartículas estables y homogéneas con mejores propiedades antimicrobianas y menor citotoxicidad a partir de fitoquímicos encontrados en las plantas o enzimas producidas por microorganismos. En esta revisión, se presentan las principales diferencias entre la síntesis química y la biosíntesis de AgNPs, así como las ventajas y desventajas del uso de cada una de ellas, y el cómo se relaciona el proceso de síntesis con el grado de toxicidad que ejerce el producto final contra diferentes organismos.
Palabras claves: Nanopartículas, AgNPs, síntesis, toxicidad.
ABSTRACT
Nowadays, silver nanoparticles (AgNPs) are being used in a wide variety of fields due to the properties that silver acquire when being used in nanometric scale. There are several methods for synthetizing AgNPs from which, through the optimization of different parameters, nanoparticles with different sizes, shapes and coatings can be generated. These characteristics are directly related to the AgNPs final properties and, therefore, to the applications in which they can be used. In recent years, following the trend of searching for environmentally friendly synthesis methods (and to make the nanomaterials production profitable as well), the possibility of generating stable and homogeneous nanoparticles with better antimicrobial properties and lower cytotoxicity through the phytochemicals found in plants or the enzymes produced by different microorganisms has been assessed. In this review, we present the main differences between the chemical synthesis and the biosynthesis of AgNPs, as well as the advantages and disadvantages of the use of them both, and how the synthesis process may be related to the degree of toxicity exerted by the final product against different organisms.
Key words: Nanoparticles, AgNPs, synthesis, toxicityTexto completo:
PDFReferencias
Abbasi, E., Milani, M., Aval, S., Kouhi, M., & Akbarzadeh, A. (2014). Silver nanoparticles: Synthesis methods, bio-applications and properties. Informa healthcare, Critical Reviews in Microbiology.
Abdul Qais, F., Shafiq, A., Khan, H. M., Husain, F. M., Khan, R. A., Alenazi, B., Ahmad, I. (2019). Antibacterial effect of silver nanoparticles synthesized using Murraya koenigii (L.) against multidrug-resistant pathogens. Bioinorganic Chemistry and Applications, 2019. doi:10.1155/2019/4649506
Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M. I., Kumar, R., & Sastry, M. (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids and Surfaces B: Biointerfaces, 28, 313-318.
Ahmad, S., Tauseef, I., Haleem, K. S., Khan, K., Shahzad, M., Ali, M., & Sultan, F. (2019). Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. Applied Nanoscience. doi:10.1007/s13204-019-01221-z
Ahmad, Z. P. (2005). Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. . Indian J Chest Dis Allied Sci , 48, 171–176.
Ahmed, R. H., & Mustafa, D. E. (2020). Green synthesis of silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10, 1-14. doi:10.1007/s40089-019-00291-9
Ahn, E.-Y., Jin, H., & Park, Y. (2019). Assessing the antioxidant, cytotoxic, apoptotic and wound healing properties of silver nanoparticles green-synthesized by plant extracts. Materials Science & Engineering C, 101, 204-2016. doi:10.1016/j.msec.2019.03.095
Alyousef, A. A., Archad, M., AlAkeel, R., & Alqasim, A. (2019). Biogenic silver nanoparticles by Myrtus communis plant extract: biosynthesis, characterization and antibacterial activity. Biotechnology & Biotechnological Equipment, 33(1), 931-936. doi:10.1080/13102818.2019.1629840
Anandan, M., Poorani, G., Boomi, P., Varunkumar, K., Anand, K., Anil Chuturgoon, A., . . . Gurumallesh Prabu, H. (2019). Green synthesis of anisotropic silver nanoparticles from the aqueous leaf extract of Dodonaea viscosa wih their antibacterial and anticancer activities. Process Biochemistry, 80, 80-88. doi:10.1016/j.procbio.2019.02.014
Arcot, L., Rojas, O., & Ahsna, K. (2014). Silver nanoparticle synthesis mediated by carboxylated cellulose nanocrystals. ICE Publishing.
Atiyeh, B. S. (2007). Effect of silver on burn wound infection control and healing: review of the literature. Burns, 33(2), 139-148. doi:10.1016/j.burns.2006.06.010
Attiya, M., El-Ahmady El-Naggar, N., Shawqi Hamza, S., & Sherief, A. (2015). Green synthesis, characterization and antimicrobial activities of silver nanoparticles by Streptomyces viridodiastaticus SSHH-1 as a living nano-factory: Statistical optimization of process variables. Current Nanoscience, 11, 640-654.
Ávalos, A. H. (2013). Nanopartículas de plata: aplicaciones y riesgos tóxicos para la salud humana y el medio ambiente. Revista Complutense De Ciencias Veterinaria, 7(2), 1-23. doi:10.5209/rev_RCCV.2013.v7.n2.43408
Azmath, P., Baker, S., Rakshith, D., & Satish, S. (2016). Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharmaceutical Journal, 24, 140-146. doi:10.1016/j.jsps.2015.01.008
Barkat, A., Beg, S., Naim, M., & Pottoo, F. (2017). Current progress in synthesis, characterization and applications of silver nanoparticles: precepts and prospects. Bentham Science Publishers.
Cardoso, P. (2016). Nanopartículas de plata: obtención, utilización como antimicrobiano e impacto en el área de la salud. Revista Hospital de Niños Ricardo Gutiérez, 58(260), 19-28.
Casillas-Figueroa, F., Arellano-García, M. E., Leyva-Aguilera, C., Ruíz-Ruíz, B., Luna, R., Radilla-Chávez, P., & Bogdanchikova, N. (2020). ArgovitTM Silver Nanoparticles Effects on Allium cepa: Plant Growth Promotion without Cyto Genotoxic Damage. Nanomaterials, 10(1386), 1-20.
Castellanos, R. B. (2003). Efecto antibacteriano de las nanopartículas de plata sobre Escherichia coli. Revista de toxicología en línea, 28-34.
Chowdhury, S., Yusoi, F., & Faruck, M. (2016). Process Optimization of silver nanoparticle synthesis using response surface methodology. Procedio Engineering and Advanced Materials.
Dakshayani, S., Marulasiddeshwara, M., Sharath Kumar, M., Ramesh, G., Raghavendra Kumar, P., Devaraja, S., & Hosamani, R. (2019). Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. International Journal of Biological Molecules, 131, 787-797. doi:10.1016/j.ijbiomac.2019.01.222
Deniz, F., Adigüzel, A. O., & Mazmanci, M. A. (2019). The biosynthesis of silver nanopasrticles by cytoplasmic fluid of Coriolus versicolor. Turkish Journal of Engineering, 3(2), 92-96. doi:10.31127/tuje.429072
Dey Bhowmik, A., Bandyopadhyay, A., & Chattopadhyay, A. (2019). Cytotoxic and mutagenic effects of green silver nanoparticles in cancer and normal cells: a brief review. The Nucleus.
Erdogan, O., Abbak, M., Demirbolat, G. M., Birtekocak, F., Aksel, M., Pasa, S., & Cevik, O. (2019). Green synthesis of silver nanoparticles via Cynara scolymus leaf extracts: The characterization, anticancer potential with photodynamic therapy in MCF7 cells. PLoS ONE, 14(6). doi:10.1371/journal.pone.0216496
Ertürk, A. S. (2019). Biosynthesis of silver nanoparticles using Epilobium parviflorum green tea extract: Analytical applications to colorimetric detection of Hg2+ ions and reduction of hazardous organic dyes. Journal of Cluster Science. doi:10.1007/s10876-019-01634-4
Feng, Q. L. (2000). A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 52(4), 662-668.
Feroze, N., Arshad, B., Younas, M., Afridi, M. I., Saqib, S., & Ayaz, A. (2020). Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research & Technique, 83(72), 72-80. doi:10.1002/jemt.23390
Flores, C. (2014). Nanopartículas de plata con potenciales aplicaciones en materiales implantables: síntesis, caracterización fisicoquímica y actividad bactericida. Universidad Nacional de Plata, 100-100.
Gomes Rodrigues, A., Romano de Oliveira Goncales, P. J., Ottoni, C. A., de Cássia Ruiz, R., Morgano, M. A., Luiz de Araújo, W., . . . De Souza, A. O. (2019). Functional textiles impregnated with biogenic silver nanoparticles from Bionectria ochroleuca and its antimicrobial activity. Biomedical Microdevices, 21(56). doi:10.1007/s10544-019-0410-0
Gong, P. L. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. . Nanotechnology, 18, 604–611.
González-jiménez, A. &. (2020). Nanopartículas de plata como agente antibacteriano en infecciones óseas. Farma Journal. doi:ISSN 2445-1355
Gowramma, B., Keerthi, U., Rafi, M., & Muralidhara Rao, D. (2015). Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech, 5, 195-201. doi:10.1007/s13205-014-0210-4
Gu, H. H. (2003). Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett, 3, 1261–1263.
Guilger, M., Pasquoto-Stigliani, T., Bileski-Jose, N., Grillo, R., Abhilash, P., Fernandes Fraceto, L., & de Lima, R. (2017). Biogenic silver nanoparticles based on trichoderma harzianum: synthesis, characterization, toxicity evaluation and biological activity. Nature Scientific Reports, 7. doi:10.1038/srep44421
Guilger-Casagrande, M., & de Lima, R. (2019). Synthesis of silver nanoparticles mediated by fungi: A review. Frontiers in bioengineering and biotechnology, 7(287). doi:10.3389/fbioe.2019.00287
Guilger-Casagrande, M., Germano-Costa, T., Pasquoto-Stigliani, T., Fernandes.Fraceto, L., & de Lina, R. (2019). Biosynthesis of silver nanoparticles employing Trichoderma harzianum with enzymatic stimulation for the control of Sclerotinia sclerotiorum. Nature Scientific Reports, 9. doi:10.1038/s41598-019-50871-0
Gulbagca, F., Ozdemir, S., Gulcan, M., & Sen, F. (2019). Synthesis and characterization of Rosa canina-mediated biogenic silver nanoparticles for anti-oxidant, antibacterial, antifungal, and DNA cleavage activities. Heliyon, 5. doi:10.1016/j.heliyon.2019.e02980
Gupta, A. M. (1998). Journal of Applied Microbiology, 64, 5042–5045.
Güzel, R., & Erdal, G. (2018). Synthesis of Silver Nanoparticles. En Silver Nanoparticles - Fabrication, Characterization and Applications (págs. 3-20).
Haggag, E. G., Elshamy, A. M., Rabeh, M. A., Gabr, N. M., Salem, M., Youssif, K. A., . . . Abdelmohsen, U. R. (2019). Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. International Journal of Nanomedicine, 14, 6217-6229. doi:10.2147/IJN.S214171
Haider, A., & Kang, I.-K. (2014). Preparation of silver nanoparticles and their industrial and biomedical applicatios: a comprehensive review. Advances in Materials Scince and Engineering.
Hamouda, R. A., Hussein, M. H., Elhadary, A. M., & Abuelmagd, M. A. (2020). Extruded polysaccharide/protein matrix from Arthrospira platensis cultures mediated silver nanoparticles biosynthesis and capping. Applied Nanoscience. doi:10.1007/s13204-020-01490-z
Huang, F., Long, Y., Liang, Q., Purushothan, B., Swamy, M. K., & Duan, Y. (2019). Safed musli (Chlorophytum borivilianum L.) callus-mediated biosynthesis of silver nanoparticles and evaluation of their antimicrobial activity and citotoxicity against human colon cancer cells. Hindawi Journal of Nanomaterials, 2019. doi:10.1155/2019/2418785
Hwang, E. L.-I. (2008). Analysis of the Toxic Mode of Action of Silver Nanoparticles Using Stress-Specific Bioluminescent Bacteria. Small, 4, 746-750.
Ibrahim, E., Kilany, M., Ghramh, H., & Khan, K. (2018). Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthe- sized silver nanoparticles (AgNPs) using Juniperus procera. Saudi Journal of Biological Sciences.
Ishida, K., Ferreira Cipriano, T., Miranda Rocha, G., Weissmüller, G., Gomes, F., Miranda, K., & Rozental, S. (2013). Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz, 1-9. doi:10.1590/0074-0276130269
Jalilian, F., Chahardoli, A., Sadrjavadi, K. F., & Shokoohinia, Y. (2020). Green synthesized silver nanoparticle from Allium ampeloprasum aqueous extract: Characterization, antioxidant activities, antibacterial and cytotoxicity effects. Advanced Powder Technology, 1-10.
Jeong, Y., Lim, D., & Choi, J. (2014). Assesment of size- dependent antimicrobial and cytotoxic properties of silver nanoparticles. Advances in Materials Science and Engineering.
Joshi, N., Pathak, A., Anupam, R., Jain, N., Singh, J., & Prakash Upadhyaya, C. (2019). A rapid and efficient biosynthesis of metallic nanoparticles using aqueous extract of chia (Salvia hispanica L.) seeds. BioNanoScience. doi:10.1007/s12668-019-00672-6
Kamil, D., Prameeladevi, T., Ganesh, S., Prabhakaran, N., Nareshkumar, R., & Thomas, S. P. (2017). Green synthesis of silver nanoparticles by entomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphis erysimi Kalt.). Indian Journal of Experimental Biology, 55, 555-561.
Kannaujia, R., Srivastava, C. M., Prasad, V., Singh, B. N., & Pandey, V. (2019). Phyllanthus emblica fruit extract stabilized biogenic silver nanoparticles as a growth promoter of wheat varieties by reducing ROS toxicity. Plant Physiology and Biochemistry, 142, 460-471. doi:10.1016/j.plaphy.2019.08.008
Kaur, G., Kalia, A., & Sodhi, H. S. (2019). Sized controlled, time-efficient biosynthesis of silver nanoparticles from Pleurotus florida using ultra-violet, visible range, and microwave radiations. Inorganic and Nano-Metal Chemistry. doi:10.1080/24701556.2019.1661466
Keshari, A. K., Srivastava, R., Singh, P., Yadav, V. B., & Nath, G. (2018). Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. Journal of Ayurveda and Integrative Medicine, 1-8. doi:10.1016/j.jaim.2017.11.003
Khalil, N. M. (2013). Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. African Journal of Microbiological Research, 7(50), 5645-5651. doi:10.5897/AJMR2013.6429
Khalil, N. M., Abd El-Ghany, M. N., & Rodríguez-Couto, S. (2018). Antifungal and anti-mycotoxin efficacy of biogenic silver nanoparticles produced by Fusarium chlamydosporum and Penicillium chrysogenum at non-cytotoxic doses. Chemosphere. doi:10.1016/j.chemosphere.2018.11.129
Khan, I., Bahuguna, A., Krishnan, M., Shukla, S., Lee, H., Min, S., & Kang, S. (2019). The effect of biogenic manufactured silver nanoparticles on human endothelial cells and zebrafish model. Science of The Total Environment.
Khodashenas, B., & Ghorbani, H. (2014). Synthesis of silver nanoparticles with different shapes. Arabian Journal of Chemistry.
Küp, F. Ö., Coskuncay, S., & Duman, F. (2019). Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): Evaluation of their antibacterial, antioxidant and drug release system activities. Materials Science & Engineering C. doi:10.1016/j.msec.2019.110207
Liu, X., Dumitrescu, E., Kumar, A., Austin, D., Goia, D., Wallace, K., & Andreescu, S. (2019). Differential lethal and sublethal effects in embryonic zebrafish exposed to different sizes of silver nanoparticles. Environmental Pollution(248), 627-634.
Lok, C. H. (2007). Silver nanoparticles: partial oxidation and antibacterial activities. JBCI. Journal of Biological Inorganic Chemistry, 12(4), 527-534. doi:10.1007/s00775-007-0208-z
Majoumouo, M. S., Sibuyi, N. R., Tincho, M. B., Mbekou, M., Boyom, F. F., & Meyer, M. (2019). Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. International Journal of Nanomedicine, 14, 9031-9046. doi:10.2147/IJN.S223447
Marisa, S., Juliana, S., William, F., Alexeia, G., Luis, A., Lima, S., Caire, A. (2019). Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: A close analysis of particle size dependence. Science of the Total Environment(660), 459–467.
Matsumura, Y., Yoshikata, K., Kunisaki, S. & Tsuchido, T. (2003). Mode of bactericidal action of silver Zeolite and its comparison with that of silver nitrate. Applied and Environmental Microbiology, 69 (7), 4278- 4281. doi: 10.1128/AEM.69.7.4278-4281.2003
Maurer-Jones MA, L. Y. (2010). Functional assessment of metal oxide nanoparticle toxicity in immune cells. . ACS Nano, 4, 3363-3373. doi:10.1021/nn9018834
Mirzajani, F. G. (2011). Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Research in Microbiology, 162, 542-549.
Mohammad, Y., Asiyeh, H., Amiri, M., Oskuee, R., Hosseini, H., Hashemzadeh, A., & Darroudi, M. (2019). Eco-friendly and plant-based synthesis of silver nanoparticles using Allium giganteum and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Advanced Performance Materials, 1-8.
Mokhtari, N., Daneshpajouh, S., Seyedbagheri, S., Atashdehghan, R., Abdi, K., Sarkar, S., Reza Shahverdi, A. (2009). Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Materials Research Bulletin, 44, 1415-1421. doi:10.1016/j.materresbull.2008.11.021
Morones, J. R. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology. 16(10), 2346.
Mrazinkova, A., Velgosova, O., Kavulicova, J., & Krum, S. (2018). The influence of silver nanoparticles synthesis on their properties. Acta Polytechnica.
Muhammad, N., Khalil, A., Ali, M., Shah, M., Ayaz, M., & Shinwari, Z. (2019). Phytochemical Analysis, Ephedra Procera C. A. Mey. Mediated Green Synthesis of Silver Nanoparticles, Their Cytotoxic and Antimicrobial Potentials. Medicina, 55(369), 1-17.
Murray, P. R. (2009). Microbiología Medica(6). N., T. (1974). On the Basic Concept of Nano-Technology. Japan Society of Precision Engineering(Part II).
Nakkala, J., Mata, R., & Sadras, S. (2017). Green synthesized nano silver: Synthesis, physicochemical profiling, antibacterial, anticancer activities and biological in vivo toxicity. Journal of Colloid and Interface Science(499), 33-45.
Nanda, A., Nayak, B., & Moorthy, K. (2018). Antimicrobial properties of biogenic silver nanoparticles synthesized from phylloplane fungus, Aspergillus tamarii. Biocatalysis and Agricultural Biotechnology. doi:10.1016/j.bcab.2018.08.002
Nasar, M. Q., Zohra, T., Khalil, A. T., Saqib, S., Ayaz, M., Ahmad, A., & Shinwari, Z. K. (2019). Seripheidium quettense mediated green synthesis of biogenic silver nanoparticles and their theranostic applications. Green Chemistry Letters and Reviews, 13(3), 310-322. doi:10.1080/17518253.2019.1643929
Natsuki, J., Natsuki, T., & Hashimoto, Y. (2015). A review of silver nanoparticles; Synthesis methods, properties and applications. Science Publishing Group.
Oroz, M. M. (2009). Nanopartículas de plata: métodos de síntesis en disolución y propiedades bactericidas. In Anales de la Real Sociedad Española de Química(1), 33-41.
Otenin, A., Lisichkin, G., & Nizamov, T. (2014). Chemical modification of the surfaces of silver nanoparticles: Synthesis of Janus particles. Nanotechnologies in Russia.
Othman, A. M., Elsayed, M. A., Al-Bakakocy, N. G., Hassan, M. M., & Elshafei, A. M. (2019). Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. Journal of Genetic Engineering and Biotechnology, 17(8). doi:10.1186/s43141-019-0008-1
Paiva Bocate, K., Fonseca Reis, G., Canteri de Souza, P., Oliveira Junior, A. G., Durán, N., Nakazato, G., Aaparecido Panagio, L. (2019). Antifungal activity of silver nanoparticles and simvastatin against toxigenic species of Aspergillus. International Journal of Food Microbiology, 291, 79-86. doi:10.1016/j.ijfoodmicro.2018.11.012
Pal, S. T. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol, 27, 1712–1720.
Pei, J. F., Jiang, L., & Sun, T. (2019). Biosynthesis, characterization, and anticancer effect of plant-mediated silver nanoparticles using Coptis chinensis. International Journal of Nanomedicine, 14, 1969-1978. doi:10.2147/IJN.S188235
Piddock, L. (1990). Techniques used for the determination of antimicrobial resistance andsensitivity in bacteria. Journal of Applied Microbiology(68), 307-318.
Pinheiro Costa Silva, L., Pinto Oliveira, J., Juvencio Keijok, W., Romero da Silva, A., Rocha Aguiar, A., Cunegundes Guimaraes, M. C., . . . Ribeiro Braga, F. (2017). Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. International Journal of Nanomedicine, 12, 6373-6381. doi:10.2147/IJN.S137703
Pirtarighat, S., Ghannadnia, M., & Baghshadi, S. (2019). Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. Journal of Nanostructure in Chemistry, 9, 1-9. doi:10.1007/s40097-018-0291-4
Ponmurugan, P. (2016). Biosynthesis of silver and gold nanoparticles using Trichoderma atroviride for biological control of Phomopsis cancer disease in tea plants. IET Nnanobiotechnology. doi:10.1049/iet-nbt.2016.0029
Pourzahedi, L., & Eckelman, M. (2015). Comparative life cycle assessment of silver nanoparticle synthesis routes. Royal Society of Chemistry.
Quintero-Quiroz, C., Acevedo, N., Zapata-Giraldo, J., Botero, L., & Quintero, J. (2019). Optimization of silver nanoparticle synthesis by chemical reduction and evaluation of its antimicrobial and toxic activity. Biomaterial Research.
Rahimi, G., Alizadeh, F., & Khodavandi, A. (2016). Mycosynthesis of silver nanoparticles from Candida albicans and its antibacterial activity against Escherichia coli and Staphylococcus aureus. Tropical Journal of Pharmaceutical Research, 15(2), 371-375. doi:10.4314/tjpr.v15i2.21
Rai, M. Y. (2009). Nanopartículas de plata como nueva generación de antimicrobianos. Avances en biotecnología, 27(1), 76-83.
Rajesh, S., Dharanishanthi, V., & Vinoth Kanna, A. (2015). Antibacterial mechanism of biogenic silver nanoparticles of Lactobacillus acidophilus. Journal of Experimental Nanoscience, 10(15), 1143-1152. doi:10.1080/17458080.2014.985750
Raman, S., Priyankaa, K., Jacob, A., Kamalakkannana, S., Thangamb, R., Gunasekaranb, P., . . . Achiraman, S. (2012). Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochemistry, 47, 273-279.
Ramya, V. P., & Muralitharan, G. (2019). Biosynthesis of silver nanoparticles using Calothrix membranacea KLR006 and characterization of its antimicrobial properties. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, 5(2), 237. doi:10.26479/2019.0502.18
Roy, A., Bulut, O., Some, S., Mandal, A. K., & Yilmaz, M. D. (2019). Green synthesis of silver nanoparticles: Biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv, 9, 2673-2702. doi:10.1039/c8ra08982e
Roy, K., Sarkar, C., & Ghosh, C. (2015). Photocatalytic activity of biogenic silver nanoparticles synthesized using yeast (Saccharomyces cerevisiae) extract. Appl Nanosci, 5, 953-959. doi:10.1007/s13204-014-0392-4
Sedaghat, S., & Omidi, S. (2019). Batch process biosynthesis of silver nanoparticles using Equisetum arvense leaf extract. Bioinspired, Biomimetic and Nanobiomaterials. doi:10.1680/jbibn.18.00045
Shahverdi, A. R., Minaeian, S., Reza Shahverdi, H., Jamalifar, H., & Nohi, A.-A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: A novel biological approach. Process Biochemistry, 42, 919-923. doi:10.1016/j.procbio.2007.02.005
Sharma, V., Kaushik, S., Pandit, P., Dhull, D., Yadav, J., & Kaushik, S. (2019). Green synthesis of silver nanoparticles from medicinal plants and evaluation of their antiviral potential against chikungunya virus . Applied Microbiology and Biotechnology(103), 881-891.
Shivaji, S., Madhu, S., & Singh, S. (2011). Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochemistry, 46, 1800-1807. doi:10.1016/j.procbio.2011.06.008
Skladanowski, M., Golinska, P., Rudnicka, K., Dahm, H., & Rai, M. (2016). Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med Microbiol Immunol, 205, 603-613. doi:10.1007/s00430-016-0477-7
Sobczak-Kupiec, A., Malina, D., Kijkowska, R., & Wzore, Z. (2012). Influence of different types of stabilisers on the properties of silver nanoparticles suspension. Micro & Nano Letters.
Sobczak-Kupiec, A., Malina, D., Wzorek, Z., & Zimowska, M. (2011). Influence of silver nitrate concentration on the properties of silver nanoparticles. Micro & Nano Letters.
Sondi, I. y.-S. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177-182.
Souza, J., Souza, R., & Franchi, L. (2019). Silver nanoparticles: An integrated view of green synthesis methods, T transformation in the environment, and toxicity. Ecotoxicology and Environmental Safety(171), 691-700.
Thatikayala, D., Jayarambabu, N., Banothu, V., Ballipalli, C. B., Park, J., & Rao, K. V. (2019). Biogenic synthesis of silver nanoparticles mediated by Theobroma cacao extract: enhanced antibacterial and photocatalytic activities. Journal of Materials Science: Materials in Electronics. doi:10.1007/s10854-019-02077-3
Tripathi, D., Modi, A., Narayan, G., & Rai, S. (2019). Green and cost effective synthesis of silver nanoparticles from endangered T medicinal plant Withania coagulans and their potential biomedical properties. Materials Science & Engineering C(100), 152-164.
Upendra Kumar, P. V. (2007). Study of mechanism of enhanced antibacterial activity by green synthesis of silver nanoparticles. Nanotechnology, 22, 415104.
Uttayarat, P., Eamsiri, J., Tangthong, T., & Suwanmala, P. (2014). Radiolytic sysntheis of colloidal silver nanoparticles for antibacterial wound dressings. Advances in Materials Science and Engineering.
Vijayarathna, S., & Sasidharan, S. (2012). Cytotoxicity of methanol extracts of Elaeis guineensis on MCF-7 and Vero cell lines. Asian Pacific Journal of Tropical Biomedicine., 2(10), 826-829.
Vo, T.-T., Nguyen, T. T.-N., Huynh, T. T.-T., Vo, T. T.-T., Nguyen, T. T.-N., Nguyen, D.-T., . . . Nguyen, T.-D. (2019). Biosynthesis of silver and gold nanoparticles using aqueous extract form Crinum latifolium leaf and their application forward antibacterial effect and wastewater treatment. Hindaw Journal of Nanomaterials, 2019. doi:10.1155/2019/8385935
Wallace, R., Milena, P., Bruna, L., Letícia, F., Fanny, C., Bernardes, J., . . . Seabra, A. (2018). Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Applied Surface Science.
Wang, H., Qiao, X., Chen, J., & Ding, S. (2005). Preparation of silver nanoparticles by chemical reduction method. Colloids and Surfaces.
Wojnicki, M., Tokarski, T., Hessei, V., & Fitzner, K. (2019). Continuous, monodisperse silver nanoparticles synthesis using microdroplets as a reactor. Journal of Flow Chemistry.
Wypij, M., Czarnecka, J., Swiecimska, M., Dahm, H., Rai, M., & Golinska, P. (2018). Synthesis, characterization and evaluation of antimicrobial and cytotoxic activities of biogenic silver nanoparticles synthesized from Streptomyces xinghaiensis OF1 strain. World Journal of Microbiology and Biotechnology, 34(23). doi:10.1007/s11274-017-2406-3
Xiaozhou, W., Qiong, W., Tingting, D., Jie, S., Xiahui, W., Ziyu, J., . . . Chao, J. (2020). Identification of possible reductants in the aqueous leaf extract of mangrove plant Rhizophora apiculata for the fabrication and cytotoxicity of silver nanoparticles against human osteosarcoma MG-63 cells. Materials Science & Engineering(111252), 1-25.
Yan, A., & Chen, Z. (2019). Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism . International Journal of Molecular Sciences(20), 1-21.
Yusuf, M. (2019). Silver nanoparticles: Synthesis and applications. En Handbook of Ecomaterials (pág. 2343).
Zanella, R. (2014). Metodologías para la síntesis de nanopartículas: controlando forma y tamaño. Mundo Nano. Revista Interdisciplinaria en Nanociencias y Nanotecnología,, 5(1). doi:10.22201/ceiich.24485691e.2012.1.45167
Enlaces refback
- No hay ningún enlace refback.
Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.
.