M17-UC1: UNA REGIÓN CLAVE PARA EL ESTUDIO DE LA FORMACIÓN ESTELAR MASIVA

Jennyfer Grisales-Casadiegos, Josep M. Masqué, Dennis Jack

Resumen


Presentamos una revisión de los resultados observacionales de la región H II hipercompacta M17-UC1. Enmarcado en mi tesis doctoral del Departamento de Astronomía de la Universidad de Guanajuato, ofrecemos una síntesis cronológica y crítica de los avances más relevantes en radio e infrarrojo, incluyendo evidencias observacionales de la presencia de disco, outflow bipolar junto a la caracterización fotométrica (SED). Estas observaciones apuntan a una alta luminosidad bolométrica y sugiere que UC1 es una estrella muy masiva (48-64M☉). Sobre esta base, delineamos la metodología que implementamos con ALMA (Atacama LargeMillimeter/submillimeter Array) para resolver su dinámica interna: (i) descomponer el continuo en polvo y libre–libre para aislar el disco y estimar su masa superficial; (ii) cartografiar el gas ionizado con líneas de recombinación (p. ej., H26α,H36α) y derivar campo de velocidades entre otros parámetros; y (iii) trazar el gas molecular caliente (p. ej., CH₃OCHO) para medir rotación, además de cuantificar el outflow. El objetivo es pasar de una descripción principalmente morfológica a un inventario físico coherente —masa, cinemática ionizada/molecular y retroalimentación— que consolide a UC1 como una muestra que pone a prueba la hipótesis de acreción mediada por disco bajo fuerte retroalimentación.

Texto completo:

PDF

Referencias


Arthur, S. J., & Hoare, M. G. (2006). Hydrodynamics of cometary compact H II regions. The Astrophysical Journal Supplement Series, 165(2), 283–312. https://doi.org/10.1086/503899

Bally, J., & Zinnecker, H. (2005). The birth of high-mass stars: Accretion and/or mergers? The Astronomical Journal, 129(5), 2281–2293. https://doi.org/10.1086/429098

Beuther, H., Kuiper, R., & Tafalla, M. (2025). Star formation from low to high mass: A comparative view. Annual Review of Astronomy and Astrophysics, 63, 1–44. https://doi.org/10.1146/annurev-astro-013125-122023

Bonfand, M., Csengeri, T., Bontemps, S., Brouillet, N., Motte, F. (2024). ALMA-IMF XI. The sample of hot core candidates: A rich population of young high-mass protostars unveiled by the emission of methyl formate. Astronomy & Astrophysics, 687, A163. https://doi.org/10.1051/0004-6361/202347856

Bonnell, I. A., & Bate, M. R. (2005). Binary systems and stellar collisions: The role of mergers in massive star formation. Monthly Notices of the Royal Astronomical Society, 362(3), 915–920. https://doi.org/10.1111/j.1365-2966.2005.09360.x

Caswell, J. L., Vaile, R. A., Ellingsen, S. P., Whiteoak, J. B., & Norris, R. P. (1995). Galactic methanol masers at 6.6 GHz. Monthly Notices of the Royal Astronomical Society, 272(1), 96–138. https://doi.org/10.1093/mnras/272.1.96

Caswell, J. L. (1998). Positions of hydroxyl masers at 1665 and 1667 MHz. Monthly Notices of the Royal Astronomical Society, 297(2), 215–246. https://doi.org/10.1046/j.1365-8711.1998.01430.x

Chen, Z., Goto, M., Henning, T., Stecklum, B., Linz, H., Fedele, D., & Sanna, A. (2015). VLT near- to mid-IR imaging and spectroscopy of the M 17 UC1–IRS 5 region. Astronomy & Astrophysics, 578, A82. https://doi.org/10.1051/0004-6361/201424895

Churchwell, E. (2002). Ultra-compact H II regions and massive star formation. Annual Review of Astronomy and Astrophysics, 40, 27–62. https://doi.org/10.1146/annurev.astro.40.060401.093845

De Pree, C. G., Wilner, D. J., Mercer, A. J., Davis, L. E., Goss, W. M., & Kurtz, S. (2014). Flickering of the ultracompact H II region in W49A. The Astrophysical Journal, 781(2), L36. https://doi.org/10.1088/2041-8205/781/2/L36

Downes, D., & Rinehart, R. (1966). Microwave Observations of the Cygnus X Region. The Astrophysical Journal, 144, 937–948.

Draine, B. T. (2011). Physics of the interstellar and intergalactic medium. Princeton University Press.

Eddington, A. S. (1926). The internal constitution of the stars. Cambridge University Press.

Felli, M., Johnston, K. J., & Churchwell, E. (1980). An unusual radio point source in M17. The Astrophysical Journal Letters, 242, L157–L161.

Felli, M., Churchwell, E., Wilson, T. L., & Taylor, G. B. (1984). High-resolution radio observations of compact H II regions in M 17. Astronomy & Astrophysics, 136, 53–62.

Galván-Madrid, R., Peters, T., Keto, E., Mac Low, M.-M., Banerjee, R., & Klessen, R. S. (2011). Time variability in simulated ultracompact and hypercompact H II regions. Monthly Notices of the Royal Astronomical Society, 416(2), 1033–1044. https://doi.org/10.1111/j.1365-2966.2011.19101.x

Haemmerlé, L., Eggenberger, P., Meynet, G., Maeder, A., & Charbonnel, C. (2017). Massive star formation by accretion. I. Evolution in the Hertzsprung–Russell diagram. Astronomy & Astrophysics, 602, A17. https://doi.org/10.1051/0004-6361/201629635

Hennemann, M., Motte, F., Schneider, N., et al. (2012). Filaments in the massive star-forming complex M 17 revealed by Herschel. Astronomy & Astrophysics, 543, L3. https://doi.org/10.1051/0004-6361/201219171

Hosokawa, T., & Omukai, K. (2009). Evolution of massive protostars with high accretion rates. The Astrophysical Journal, 691(1), 823–846. https://doi.org/10.1088/0004-637X/691/1/823

Hosokawa, T., Yorke, H. W., & Omukai, K. (2010). Evolution of massive protostars: Via disk acretion. The Astrophysical Journal, 721(1), 478–492. https://doi.org/10.1088/0004-637X/721/1/478

Johnson, C. O., De Pree, C. G., & Goss, W. M. (1998). A high-resolution VLA study of M17-UC1. The Astrophysical Journal, 500, 302–310. https://doi.org/10.1086/305717

Kahn, F. D. (1974). Cocoons around early-type stars. Astronomy & Astrophysics, 37, 149–162.

Kassis, M., Deutsch, L. K., Campbell, M. F., Hora, J. L., Fazio, G. G., & Hoffmann, W. F. (2002). Mid-Infrared Observations of M17. The Astronomical Journal, 124(3), 1636–1649. https://doi.org/10.1086/341819

Keto, E. (2002). On the Evolution of Ultracompact H II Regions. The Astrophysical Journal, 580(2), 980–986. https://doi.org/10.1086/343794

Keto, E. (2007). The Formation of Massive Stars: Accretion, Disks, and the Development of Hypercompact H II Regions. The Astrophysical Journal, 666, 976–981. https://doi.org/10.1086/520320

Krumholz, M. R., Klein, R. I., McKee, C. F., Offner, S. S. R., & Cunningham, A. J. (2009). The formation of massive star systems by accretion. Science, 323(5915), 754–757. https://doi.org/10.1126/science.1165857

Kurtz, S. (2002). Ultracompact H II Regions. Revista Mexicana de Astronomía y Astrofísica, Serie de Conferencias, 12, 16–21.

Lim, W., & De Buizer, J. M. (2019). Surveying the Giant H II Regions of the Milky Way with SOFIA. I. W51A. The Astrophysical Journal, 873, 51. https://doi.org/10.3847/1538-4357/ab0288

Lim, W., De Buizer, J. M., & Radomski, J. T. (2020). Surveying the Giant H II Regions of the Milky Way with SOFIA. II. M17. The Astrophysical Journal, 888, 98. https://doi.org/10.3847/1538-4357/ab5fd0

McKee, C. F., & Tan, J. C. (2003). The formation of massive stars from turbulent cores. The Astrophysical Journal, 585(2), 850–871. https://doi.org/10.1086/346149

Mezger, P. G., Schraml, J., & Terzian, Y. (1967). A new class of compact H II regions associated with OH emission sources. The Astrophysical Journal Letters, 150, L157–L161.

Nielbock, M., Chini, R., Hoffmeister, V. H., Scheyda, C. M., Steinacker, J., Nürnberger, D., & Siebenmorgen, R. (2007). The Morphology of M17-UC1: A Disk Candidate Surrounding a Hypercompact H II Region. The Astrophysical Journal Letters, 656(2), L81–L84. https://doi.org/10.1086/512972

Panagia, N. (1973). Some physical parameters of early-type stars. The Astronomical Journal, 78(9), 929–934. https://doi.org/10.1086/111518

Peters, T., Mac Low, M.-M., Banerjee, R., Klessen, R. S., & Dullemond, C. P. (2010). Ionization feedback in massive star formation. The Astrophysical Journal, 711(2), 1017–1028. https://doi.org/10.1088/0004-637X/711/2/1017

Povich, M. S., Benjamin, R. A., Whitney, B. A., Babler, B. L., Indebetouw, R., Meade, M. R., & Churchwell, E. (2007). A multiwavelength study of M17: The spectral energy distribution and PAH emission morphology of a massive star formation region. The Astrophysical Journal, 660(1), 346–362. https://doi.org/10.1086/513073

Palla, F., & Stahler, S. W. (1993). The pre-main-sequence evolution of intermediate-mass stars. The Astrophysical Journal, 418, 414–425.

Roth, N. (2014). The dynamics of ultracompact H II regions. Monthly Notices of the Royal Astronomical Society, 438(2), 1335–1354. https://doi.org/10.1093/mnras/stt2278

Rugel M. R., Rahner D., Beuther H., Pellegrini E. W., Wang Y., Soler J. D., Ott J., Brunthaler A., Anderson L. D., Mottram J. C. (2019). Feedback in W49A diagnosed with Radio Recombination Lines and Models. Astronomy & Astrophysics, 627, A168. https://doi.org/10.1051/0004-6361/201834068

Sanyal, D., Grassitelli, L., Langer, N., & Bestenlehner, J. M. (2015). Massive main-sequence stars approaching the Eddington limit. Astronomy & Astrophysics, 580, A20. https://doi.org/10.1051/0004-6361/201525945

Wood, D. O. S., & Churchwell, E. (1989). The morphologies and physical properties of ultracompact H II regions. The Astrophysical Journal Supplement Series, 69, 831–895. https://doi.org/10.1086/191329

Yanza, V., Masqué, J. M., Dzib, S. A., Rodríguez, L. F., Medina, S.-N. X., Kurtz, S., Loinard, L., Trinidad, M. A., Menten, K. M., & Rodríguez-Rico, C. A. (2022). The Population of Compact Radio Sources in M17. The Astronomical Journal, 163(6), 276. https://doi.org/10.3847/1538-3881/ac67ec

Zamora-Avilés, M., Vázquez-Semadeni, E., González, R. F., Franco, J., Shore, S. N., Hartmann, L. W., Ballesteros-Paredes, J., Banerjee, R., & Körtgen, B. (2019). Structure and expansion law of H II regions in structured molecular clouds. Monthly Notices of the Royal Astronomical Society, 487(2), 2200–2214. https://doi.org/10.1093/mnras/stz1235

Zhang, Y., & Tan, J. C. (2011). Radiative Transfer of Models of Massive Star Formation. I. Dependence on Basic Core Properties. The Astrophysical Journal, 733, 55. https://doi.org/10.1088/0004-637X/733/1/55

Zapata, L. A., Ho, P. T. P., Fernández-López, M., Sánchez-Monge, Á., Rodríguez, L. F., Palau, A., Garay, G., & Moriarty-Schieven, G. H. (2019). An Asymmetric Keplerian Disk Surrounding the O-type Protostar IRAS 16547–4247. The Astrophysical Journal, 872(2), 176. https://doi.org/10.3847/1538-4357/aafedf


Enlaces refback

  • No hay ningún enlace refback.


Naturaleza y Tecnología, revista electrónica de la División de Ciencias Naturales y Exactas del campus Guanajuato, Universidad de Guanajuato. En ella se reciben para su revisión y arbitraje, artículos originales de investigación, artículos de revisión sobre temas actuales de investigación, así como ensayos sobre diversas temáticas del mundo científico y académico en las áreas de la química, matemáticas, ingeniería, astronomía, biología y farmacia, dentro del ámbito que comprenden las ciencias naturales y exactas, siendo requerido que no hayan sido publicadas o en proceso de publicación en otras revistas. Cuenta también con un Facebook de notas científicas de actualidad como apoyo a la actividad académica de la comunidad universitaria y para conocimiento del público en general como parte de un programa de divulgación científica y tecnológica.

.